8 research outputs found

    Ассоциативная распределенная вычислительная система

    Get PDF
    В данной работе представлены результаты проектирования ассоциативной распределенной вычислительной системы для решения сложных задач на базе вычислительных устройств с ограниченными техническими параметрами. Для этой цели, решаемая задача разбивается на подзадачи, где для решения каждой подзадачи выделено отдельное вычислительное устройство. Структура вычислительной системы представляет собой локальную сеть с топологией “общая магистраль”. Каждое вычислительное устройство в сети сохраняет имя процедуры решения подзадачи. В качестве примера взаимодействия вычислительных устройств в сети, представлен пример решения простой задачи и ее описание в виде диаграммы последовательностей.In this paper the design of an associative distributed computing system for complex problems solving based on computing devices with limited technical parameters is presented. For this purpose, the problem under consideration is divided into subtasks. For each subtask solving, a separate computing device is allocated. The computer system is organized as a local area network with common bus topology. Each computing device in the network retains the name of the procedure that solved the certain subtask. As an example of the computing devices interaction in the network, a simple task and its description in the form of a sequence diagram is presented

    Engineering handbook

    Get PDF
    1999 handbook for the faculty of Engineerin

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Relating the power of the Multiple Associative Computing (MASC) model to that of reconfigurable bus-based models

    No full text
    The MASC (Multiple ASsociative Computing) model is a multi-SIMD model that uses control parallelism to coordinate the interaction of data parallel threads and supports associative SIMD computing on each of its threads. There have been a wide range of algorithms developed for this model. Research on using this model in real-time system applications and building a scalable MASC architecture is currently quite active. In this paper, we present simulations between MASC and reconfigurable bus-based models, e.g., various versions of the Reconfigurable Multiple Bus Machine (RMBM). Constant time simulations of the basic RMBM by MASC and vice versa are obtained. Simulations of the segmenting RMBM, fusing RMBM, and extended RMBM by MASC in non-constant time are also discussed. By taking advantage of previously established relationships between RMBM and two other popular parallel computational models, namely, the Reconfigurable Mesh (RM) and the Parallel Random Access Machine (PRAM), we extend our simulation results to further categorize the power of the MASC model in relation to RM and PRAM.</p

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin
    corecore