5,251 research outputs found

    On Similarities between Inference in Game Theory and Machine Learning

    No full text
    In this paper, we elucidate the equivalence between inference in game theory and machine learning. Our aim in so doing is to establish an equivalent vocabulary between the two domains so as to facilitate developments at the intersection of both fields, and as proof of the usefulness of this approach, we use recent developments in each field to make useful improvements to the other. More specifically, we consider the analogies between smooth best responses in fictitious play and Bayesian inference methods. Initially, we use these insights to develop and demonstrate an improved algorithm for learning in games based on probabilistic moderation. That is, by integrating over the distribution of opponent strategies (a Bayesian approach within machine learning) rather than taking a simple empirical average (the approach used in standard fictitious play) we derive a novel moderated fictitious play algorithm and show that it is more likely than standard fictitious play to converge to a payoff-dominant but risk-dominated Nash equilibrium in a simple coordination game. Furthermore we consider the converse case, and show how insights from game theory can be used to derive two improved mean field variational learning algorithms. We first show that the standard update rule of mean field variational learning is analogous to a Cournot adjustment within game theory. By analogy with fictitious play, we then suggest an improved update rule, and show that this results in fictitious variational play, an improved mean field variational learning algorithm that exhibits better convergence in highly or strongly connected graphical models. Second, we use a recent advance in fictitious play, namely dynamic fictitious play, to derive a derivative action variational learning algorithm, that exhibits superior convergence properties on a canonical machine learning problem (clustering a mixture distribution)

    Common learning

    Get PDF
    Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that when each agent's signal space is finite, the agents will commonly learn the value of the parameter, that is, that the true value of the parameter will become approximate common knowledge. The essential step in this argument is to express the expectation of one agent's signals, conditional on those of the other agent, in terms of a Markov chain. This allows us to invoke a contraction mapping principle ensuring that if one agent's signals are close to those expected under a particular value of the parameter, then that agent expects the other agent's signals to be even closer to those expected under the parameter value. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case

    Bootstrap methods for the empirical study of decision-making and information flows in social systems

    Get PDF
    Abstract: We characterize the statistical bootstrap for the estimation of information theoretic quantities from data, with particular reference to its use in the study of large-scale social phenomena. Our methods allow one to preserve, approximately, the underlying axiomatic relationships of information theory—in particular, consistency under arbitrary coarse-graining—that motivate use of these quantities in the first place, while providing reliability comparable to the state of the art for Bayesian estimators. We show how information-theoretic quantities allow for rigorous empirical study of the decision-making capacities of rational agents, and the time-asymmetric flows of information in distributed systems. We provide illustrative examples by reference to ongoing collaborative work on the semantic structure of the British Criminal Court system and the conflict dynamics of the contemporary Afghanistan insurgency

    Common Learning

    Get PDF
    Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that that when each agent's signal space is finite, the agents will commonly learn its value, i.e., that the true value of the parameter will become approximate common-knowledge. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.Common learning, Common belief, Private signals, Private beliefs

    Group Minds and the Case of Wikipedia

    Full text link
    Group-level cognitive states are widely observed in human social systems, but their discussion is often ruled out a priori in quantitative approaches. In this paper, we show how reference to the irreducible mental states and psychological dynamics of a group is necessary to make sense of large scale social phenomena. We introduce the problem of mental boundaries by reference to a classic problem in the evolution of cooperation. We then provide an explicit quantitative example drawn from ongoing work on cooperation and conflict among Wikipedia editors, showing how some, but not all, effects of individual experience persist in the aggregate. We show the limitations of methodological individualism, and the substantial benefits that come from being able to refer to collective intentions, and attributions of cognitive states of the form "what the group believes" and "what the group values".Comment: 21 pages, 6 figures; matches published versio
    corecore