221 research outputs found

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary

    On Affine Logic and {\L}ukasiewicz Logic

    Full text link
    The multi-valued logic of {\L}ukasiewicz is a substructural logic that has been widely studied and has many interesting properties. It is classical, in the sense that it admits the axiom schema of double negation, [DNE]. However, our understanding of {\L}ukasiewicz logic can be improved by separating its classical and intuitionistic aspects. The intuitionistic aspect of {\L}ukasiewicz logic is captured in an axiom schema, [CWC], which asserts the commutativity of a weak form of conjunction. This is equivalent to a very restricted form of contraction. We show how {\L}ukasiewicz Logic can be viewed both as an extension of classical affine logic with [CWC], or as an extension of what we call \emph{intuitionistic} {\L}ukasiewicz logic with [DNE], intuitionistic {\L}ukasiewicz logic being the extension of intuitionistic affine logic by the schema [CWC]. At first glance, intuitionistic affine logic seems very weak, but, in fact, [CWC] is surprisingly powerful, implying results such as intuitionistic analogues of De Morgan's laws. However the proofs can be very intricate. We present these results using derived connectives to clarify and motivate the proofs and give several applications. We give an analysis of the applicability to these logics of the well-known methods that use negation to translate classical logic into intuitionistic logic. The usual proofs of correctness for these translations make much use of contraction. Nonetheless, we show that all the usual negative translations are already correct for intuitionistic {\L}ukasiewicz logic, where only the limited amount of contraction given by [CWC] is allowed. This is in contrast with affine logic for which we show, by appeal to results on semantics proved in a companion paper, that both the Gentzen and the Glivenko translations fail.Comment: 28 page

    Towards an embedding of Graph Transformation in Intuitionistic Linear Logic

    Full text link
    Linear logics have been shown to be able to embed both rewriting-based approaches and process calculi in a single, declarative framework. In this paper we are exploring the embedding of double-pushout graph transformations into quantified linear logic, leading to a Curry-Howard style isomorphism between graphs and transformations on one hand, formulas and proof terms on the other. With linear implication representing rules and reachability of graphs, and the tensor modelling parallel composition of graphs and transformations, we obtain a language able to encode graph transformation systems and their computations as well as reason about their properties

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    A System of Interaction and Structure

    Full text link
    This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae submitted to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new top-down symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allow the design of BV, yield a modular proof of cut elimination.Comment: This is the authoritative version of the article, with readable pictures, in colour, also available at . (The published version contains errors introduced by the editorial processing.) Web site for Deep Inference and the Calculus of Structures at <http://alessio.guglielmi.name/res/cos

    Computation in Focused Intuitionistic Logic

    Get PDF
    International audienceWe investigate the control of evaluation strategies in a variant of the λ-calculus derived through the Curry-Howard correspondence from LJF, a sequent calculus for intuitionistic logic implementing the focusing technique. The proof theory of focused intuitionistic logic yields a single calculus in which a number of known λ-calculi appear as subsystems obtained by restricting types to a certain fragment of LJF. In particular, standard λ-calculi as well as the call-by-push-value calculus are analysed using this framework, and we relate cut elimination for LJF to a new abstract machine subsuming well-known machines for these different strategies

    Ribbon Proofs - A Proof System for the Logic of Bunched Implications

    Get PDF
    Submitted for the degree of Doctor of Philosophy, Queen Mary, University of London

    Proceedings of the Workshop on Linear Logic and Logic Programming

    Get PDF
    Declarative programming languages often fail to effectively address many aspects of control and resource management. Linear logic provides a framework for increasing the strength of declarative programming languages to embrace these aspects. Linear logic has been used to provide new analyses of Prolog\u27s operational semantics, including left-to-right/depth-first search and negation-as-failure. It has also been used to design new logic programming languages for handling concurrency and for viewing program clauses as (possibly) limited resources. Such logic programming languages have proved useful in areas such as databases, object-oriented programming, theorem proving, and natural language parsing. This workshop is intended to bring together researchers involved in all aspects of relating linear logic and logic programming. The proceedings includes two high-level overviews of linear logic, and six contributed papers. Workshop organizers: Jean-Yves Girard (CNRS and University of Paris VII), Dale Miller (chair, University of Pennsylvania, Philadelphia), and Remo Pareschi, (ECRC, Munich)
    • …
    corecore