3 research outputs found

    Preliminary Specification of Services and Protocols

    Get PDF
    This document describes the preliminary specification of services and protocols for the Crutial Architecture. The Crutial Architecture definition, first addressed in Crutial Project Technical Report D4 (January 2007), intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures, in particular in the electrical sector. The definitions herein elaborate on the major architectural options and components established in the Preliminary Architecture Specification (D4), with special relevance to the Crutial middleware building blocks, and are based on the fault, synchrony and topological models defined in the same document. The document, in general lines, describes the Runtime Support Services and APIs, and the Middleware Services and APIs. Then, it delves into the protocols, describing: Runtime Support Protocols, and Middleware Services Protocols. The Runtime Support Services and APIs chapter features as a main component, the Proactive-Reactive Recovery Service, whose aim is to guarantee perpetual execution of any components it protects. The Middleware Services and APIs chapter describes our approach to intrusion-tolerant middleware. The middleware comprises several layers. The Multipoint Network layer is the lowest layer of CRUTIAL's middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support Services feature two important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), and the Overlay Protection Layer (OPL) against DoS attacks. The Activity Support Services currently defined comprise the CIS Protection service, and the Access Control and Authorization service. Protection as described in this report is implemented by mechanisms and protocols residing on a device called Crutial Information Switch (CIS). The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII's organizations.The Monitoring and Failure Detection layer contains a preliminary definition of the middleware services devoted to monitoring and failure detection activities. The remaining chapters describe the protocols implementing the above-mentioned services: Runtime Support Protocols, and Middleware Services Protocol

    Architecture, Services and Protocols for CRUTIAL

    Get PDF
    This document describes the complete specification of the architecture, services and protocols of the project CRUTIAL. The CRUTIAL Architecture intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures (CII), in particular in the electrical sector. In general lines, the document starts by presenting the main architectural options and components of the architecture, with a special emphasis on a protection device called the CRUTIAL Information Switch (CIS). Given the various criticality levels of the equipments that have to be protected, and the cost of using a replicated device, we define a hierarchy of CIS designs incrementally more resilient. The different CIS designs offer various trade offs in terms of capabilities to prevent and tolerate intrusions, both in the device itself and in the information infrastructure. The Middleware Services, APIs and Protocols chapter describes our approach to intrusion tolerant middleware. The CRUTIAL middleware comprises several building blocks that are organized on a set of layers. The Multipoint Network layer is the lowest layer of the middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support layer features three important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), the CIS Communication service and the Fosel service for mitigating DoS attacks. The Activity Support layer comprises the CIS Protection service, and the Access Control and Authorization service. The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII’s organizations. The Monitoring and Failure Detection layer contains a definition of the services devoted to monitoring and failure detection activities. The Runtime Support Services, APIs, and Protocols chapter features as a main component the Proactive-Reactive Recovery service, whose aim is to guarantee perpetual correct execution of any components it protects.Project co-funded by the European Commission within the Sixth Frame-work Programme (2002-2006

    Experimental Validation of Architectural Solutions

    Get PDF
    In this deliverable the experimental results carried out in four different contexts are reported. The first contribution concerns an experimental campaign performed using the AJECT (Attack inJECTion) tool able to emulate different types of attackers behaviour and to collect information on the effect of such attacks on the target system performance. This tool is also used to perform some of the experiments described in the fourth part of the deliverable. The second contribution concerns a complementary approach using honeypots to cap- ture traces of attacker behaviours, to then study and characterize them. Different kinds of honeypots were deployed in the described experiments: low-interaction and high-interaction ones, exposing different kinds of services and protocols (general purpose network services as well as SCADA specific ones). The third and fourth contribution refer to experiments conducted on some com- ponents of the CRUTIAL architecture, namely FOSEL (Filtering with the help of Overlay Security Layer), the CIS-CS (Communication Service) and the CIS-PS (Protection Service). The experiments have been performed with the aim of evaluating the effectiveness of the proposed components from the point of view of the dependability improvement they bring, as well as the performance overhead introduced by their implementation.Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006
    corecore