1,100 research outputs found

    Stochastic spreading on complex networks

    Get PDF
    Complex interacting systems are ubiquitous in nature and society. Computational modeling of these systems is, therefore, of great relevance for science and engineering. Complex networks are common representations of these systems (e.g., friendship networks or road networks). Dynamical processes (e.g., virus spreading, traffic jams) that evolve on these networks are shaped and constrained by the underlying connectivity. This thesis provides numerical methods to study stochastic spreading processes on complex networks. We consider the processes as inherently probabilistic and analyze their behavior through the lens of probability theory. While powerful theoretical frameworks (like the SIS-epidemic model and continuous-time Markov chains) already exist, their analysis is computationally challenging. A key contribution of the thesis is to ease the computational burden of these methods. Particularly, we provide novel methods for the efficient stochastic simulation of these processes. Based on different simulation studies, we investigate techniques for optimal vaccine distribution and critically address the usage of mathematical models during the Covid-19 pandemic. We also provide model-reduction techniques that translate complicated models into simpler ones that can be solved without resorting to simulations. Lastly, we show how to infer the underlying contact data from node-level observations.Komplexe, interagierende Systeme sind in Natur und Gesellschaft allgegenwärtig. Die computergestützte Modellierung dieser Systeme ist daher von immenser Bedeutung für Wissenschaft und Technik. Netzwerke sind eine gängige Art, diese Systeme zu repräsentieren (z. B. Freundschaftsnetzwerke, Straßennetze). Dynamische Prozesse (z. B. Epidemien, Staus), die sich auf diesen Netzwerken ausbreiten, werden durch die spezifische Konnektivität geformt. In dieser Arbeit werden numerische Methoden zur Untersuchung stochastischer Ausbreitungsprozesse in komplexen Netzwerken entwickelt. Wir betrachten die Prozesse als inhärent probabilistisch und analysieren ihr Verhalten nach wahrscheinlichkeitstheoretischen Fragestellungen. Zwar gibt es bereits theoretische Grundlagen und Paradigmen (wie das SIS-Epidemiemodell und zeitkontinuierliche Markov-Ketten), aber ihre Analyse ist rechnerisch aufwändig. Ein wesentlicher Beitrag dieser Arbeit besteht darin, die Rechenlast dieser Methoden zu verringern. Wir erforschen Methoden zur effizienten Simulation dieser Prozesse. Anhand von Simulationsstudien untersuchen wir außerdem Techniken für optimale Impfstoffverteilung und setzen uns kritisch mit der Verwendung mathematischer Modelle bei der Covid-19-Pandemie auseinander. Des Weiteren führen wir Modellreduktionen ein, mit denen komplizierte Modelle in einfachere umgewandelt werden können. Abschließend zeigen wir, wie man von Beobachtungen einzelner Knoten auf die zugrunde liegende Netzwerkstruktur schließt

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    A simple analytical description of the non-stationary dynamics in Ising spin systems

    Get PDF
    The analytical description of the dynamics in models with discrete variables (e.g. Isingspins) is a notoriously difficult problem, that can be tackled only undersome approximation.Recently a novel variational approach to solve the stationary dynamical regime has beenintroduced by Pelizzola [Eur. Phys. J. B, 86 (2013) 120], where simpleclosed equations arederived under mean-field approximations based on the cluster variational method. Here wepropose to use the same approximation based on the cluster variational method also for thenon-stationary regime, which has not been considered up to now within this framework. Wecheck the validity of this approximation in describing the non-stationary dynamical regime ofseveral Ising models defined on Erdos-R ́enyi random graphs: westudy ferromagnetic modelswith symmetric and partially asymmetric couplings, models with randomfields and also spinglass models. A comparison with the actual Glauber dynamics, solvednumerically, showsthat one of the two studied approximations (the so-called ‘diamond’approximation) providesvery accurate results in all the systems studied. Only for the spin glass models we find somesmall discrepancies in the very low temperature phase, probably due to the existence of alarge number of metastable states. Given the simplicity of the equations to be solved, webelieve the diamond approximation should be considered as the ‘minimalstandard’ in thedescription of the non-stationary regime of Ising-like models: any new method pretending toprovide a better approximate description to the dynamics of Ising-like models should performat least as good as the diamond approximation

    Predictive Control of Networked Multiagent Systems via Cloud Computing

    Get PDF

    Memory-induced complex contagion in spreading phenomena on networks

    Get PDF
    [eng] Epidemic modeling has proven to be an essential framework for the study of contagion phenomena in biological, social, and technical systems. Albeit epidemic models have evolved into powerful predictive tools, most assume memoryless agents and independent transmission channels. Nevertheless, many real-life examples are manifestly time-sensitive and show strong correlations. Moreover, recent trends in agent-based modeling support a generalized shift from edge-based descriptions toward node-centric approaches. Here I develop an infection mechanism that is endowed with memory of past exposures and simultaneously incorporates the joint effect of multiple infectious sources. A notion of social reinforcement/inhibition arises organically, without being incorporated explicitly into the model. As a result, the concepts of non-Markovian dynamics and complex contagion become intrinsically coupled. I derive mean-field approximations for random degree-regular networks and perform extensive stochastic simulations for nonhomogeneous networks. The analysis of the SIS model reveals a sophisticated interplay between two memory modes, displayed by a collective memory loss and the dislocation of the critical point into two phase transitions. An intermediate region emerges where the system is either excitable or bistable, exhibiting fundamentally distinct behaviors compared to the customary healthy and endemic phases. Additionally, the transition to the endemic phase becomes hybrid, showing both continuous and discontinuous properties. These results provide renewed insights on the interaction between microscopic mechanisms and topological aspects of the underlying contact networks, and their joint effect on the properties of spreading processes. In particular, this type of modeling approach that combines memory effects and complex contagion could be suitable to describe ecological interactions between biological and social pathogens.[cat] El modelatge epidèmic ha demostrat ser un marc essencial per a l’estudi dels fenòmens de contagi en sistemes biològics, socials i tècnics. Tot i que els models epidèmics han evolucionat cap a potents eines de predicció, la majoria assumeixen agents sense memòria i canals de transmissió independents. No obstant això, molts exemples de la vida real mostren fortes correlacions temporals i estructurals. A més, les tendències recents en la modelització basada en agents donen suport a un canvi generalitzat de les descripcions basades en els enllaços cap a enfocaments on els nodes són centrals. Aquí desenvolupo un mecanisme d’infecció dotat de memòria a exposicions passades i que simultàniament incorpora l’efecte conjunt de múltiples fonts infeccioses. Una noció de reforç/inhibició social sorgeix de manera orgànica, sense incorporar-se explícitament al model. Com a resultat, els conceptes de dinàmica no markoviana i contagi complex s’acoblen intrínsecament. Derivo aproximacions de camp mitjà per a xarxes aleatòries de grau fix i realitzo extenses simulacions estocàstiques per a xarxes no homogènies. L'anàlisi del model SIS revela una interacció sofisticada entre dos modes de memòria, que es manifesta mitjançant una pèrdua de memòria col·lectiva i la dislocació del punt crític en dues transicions de fase. Apareix una regió intermitja on el sistema és excitable o bistable, amb comportaments fonamentalment diferents en comparació amb les fases sanes i endèmiques habituals. A més, la transició a la fase endèmica esdevé híbrida, mostrant propietats contínues i també discontínues. Aquests resultats proporcionen una visió renovada sobre la interacció entre mecanismes microscòpics i aspectes topològics de les xarxes de contacte subjacents, i el seu efecte conjunt sobre les propietats dels processos de propagació. En particular, aquest tipus de modelització que combina efectes de memòria i contagi complex podria ser adequat per descriure interaccions ecològiques entre patògens biològics i socials.[spa] El modelado epidémico ha demostrado ser un marco esencial para el estudio de los fenómenos de contagio en sistemas biológicos, sociales y técnicos. Aunque los modelos epidémicos han evolucionado hacia potentes herramientas de predicción, la mayoría asumen agentes sin memoria y canales de transmisión independientes. Sin embargo, muchos ejemplos de la vida real muestran fuertes correlaciones temporales y estructurales. Además, las tendencias recientes en la modelización basada en agentes apoyan un cambio generalizado de las descripciones basadas en los enlaces hacia enfoques donde los nodos son centrales. Aquí desarrollo un mecanismo de infección dotado de memoria a exposiciones pasadas y que simultáneamente incorpora el efecto conjunto de múltiples fuentes infecciosas. Una noción de refuerzo/inhibición social surge de manera orgánica, sin incorporarse explícitamente al modelo. Como resultado, los conceptos de dinámica no Markoviana y contagio complejo se acoplan intrínsecamente. Derivo aproximaciones de campo medio para redes aleatorias de grado fijo y realizo extensas simulaciones estocásticas para redes no homogéneas. El análisis del modelo SIS revela una interacción sofisticada entre dos modos de memoria, que se manifiesta mediante una pérdida de memoria colectiva y la dislocación del punto crítico en dos transiciones de fase. Aparece una región intermedia donde el sistema es excitable o bistable, con comportamientos fundamentalmente diferentes en comparación con las fases sanas y endémicas habituales. Además, la transición a la fase endémica se convierte en híbrida, mostrando propiedades continuas y también discontinuas. Estos resultados proporcionan una visión renovada sobre la interacción entre mecanismos microscópicos y aspectos topológicos de las redes de contacto subyacentes, y su efecto conjunto sobre las propiedades de los procesos de propagación. En particular, este tipo de modelización que combina efectos de memoria y contagio complejo podría ser adecuado para describir interacciones ecológicas entre patógenos biológicos y sociales

    PID control as a process of active inference with linear generative models

    Get PDF
    In the past few decades, probabilistic interpretations of brain functions have become widespread in cognitive science and neuroscience. In particular, the free energy principle and active inference are increasingly popular theories of cognitive functions that claim to offer a unified understanding of life and cognition within a general mathematical framework derived from information and control theory, and statistical mechanics. However, we argue that if the active inference proposal is to be taken as a general process theory for biological systems, it is necessary to understand how it relates to existing control theoretical approaches routinely used to study and explain biological systems. For example, recently, PID control has been shown to be implemented in simple molecular systems and is becoming a popular mechanistic explanation of behaviours such as chemotaxis in bacteria and amoebae, and robust adaptation in biochemical networks. In this work, we will show how PID controllers can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation when using approximate linear generative models of the world. This more general interpretation provides also a new perspective on traditional problems of PID controllers such as parameter tuning as well as the need to balance performances and robustness conditions of a controller. Specifically, we then show how these problems can be understood in terms of the optimisation of the precisions (inverse variances) modulating different prediction errors in the free energy functional
    corecore