436 research outputs found

    Patterns and Interactions in Network Security

    Full text link
    Networks play a central role in cyber-security: networks deliver security attacks, suffer from them, defend against them, and sometimes even cause them. This article is a concise tutorial on the large subject of networks and security, written for all those interested in networking, whether their specialty is security or not. To achieve this goal, we derive our focus and organization from two perspectives. The first perspective is that, although mechanisms for network security are extremely diverse, they are all instances of a few patterns. Consequently, after a pragmatic classification of security attacks, the main sections of the tutorial cover the four patterns for providing network security, of which the familiar three are cryptographic protocols, packet filtering, and dynamic resource allocation. Although cryptographic protocols hide the data contents of packets, they cannot hide packet headers. When users need to hide packet headers from adversaries, which may include the network from which they are receiving service, they must resort to the pattern of compound sessions and overlays. The second perspective comes from the observation that security mechanisms interact in important ways, with each other and with other aspects of networking, so each pattern includes a discussion of its interactions.Comment: 63 pages, 28 figures, 56 reference

    RESTful API of a browser to browser call service based on Web-Sockets

    Get PDF
    Projecte realitzat en el marc d'un programa de mobilitat amb la Slovak University of Technology in Bratislava, Faculty of Informatics and Information TechnologiesThis project aims to define an asynchronous method for establishing unicast sessions between browsers using current technologies which could be later used as a base for technology enabling real-time communication via web browsers

    SIP based IP-telephony network security analysis

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2004 - Høgskolen i Agder, GrimstadThis thesis evaluates the SIP Protocol implementation used in the Voice over IP (VoIP) solution at the fibre/DSL network of Èlla Kommunikasjon AS. The evaluation focuses on security in the telephony service, and is performed from the perspective of an attacker trying to find weaknesses in the network. For each type of attempt by the malicious attacker, we examined the security level and possible solutions to flaws in the system. The conclusion of this analysis is that the VoIP service is exploitable, and that serious improvements are needed to achieve a satisfying level of security for the system

    SECURITY AND PRIVACY ISSUES IN MOBILE NETWORKS, DIFFICULTIES AND SOLUTIONS

    Get PDF
    Mobile communication is playing a vital role in the daily life for the last two decades; in turn its fields gained the research attention, which led to the introduction of new technologies, services and applications. These new added facilities aimed to ease the connectivity and reachability; on the other hand, many security and privacy concerns were not taken into consideration. This opened the door for the malicious activities to threaten the deployed systems and caused vulnerabilities for users, translated in the loss of valuable data and major privacy invasions. Recently, many attempts have been carried out to handle these concerns, such as improving systems’ security and implementing different privacy enhancing mechanisms. This research addresses these problems and provides a mean to preserve privacy in particular. In this research, a detailed description and analysis of the current security and privacy situation in the deployed systems is given. As a result, the existing shortages within these systems are pointed out, to be mitigated in development. Finally a privacy preserving prototype model is proposed. This research has been conducted as an extensive literature review about the most relevant references and researches in the field, using the descriptive and evaluative research methodologies. The main security models, parameters, modules and protocols are presented, also a detailed description of privacy and its related arguments, dimensions and factors is given. The findings include that mobile networks’ security along with users are vulnerable due to the weaknesses of the key exchange procedures, the difficulties that face possession, repudiation, standardization, compatibility drawbacks and lack of configurability. It also includes the need to implement new mechanisms to protect security and preserve privacy, which include public key cryptography, HIP servers, IPSec, TLS, NAT and DTLS-SRTP. Last but not least, it shows that privacy is not absolute and it has many conflicts, also privacy requires sophisticated systems, which increase the load and cost of the system.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Building a Secure Short Duration Transaction Network

    Get PDF
    The objective of this project was to design and test a secure IP-based architecture suitable for short duration transactions. This included the development of a prototype test-bed in which various operating scenarios (such as cryptographic options, various IP-based architectures and fault tolerance) were demonstrated. A solution based on SIP secured with TLS was tested on two IP based architectures. Total time, CPU time and heap usage was measured for each architecture and encryption scheme to examine the viability of such a solution. The results showed that the proposed solution stack was able to complete transactions in reasonable time and was able to recover from transaction processor failure. This research has demonstrated a possible architecture and protocol stack suitable for IP-based transaction networks. The benefits of an IP-based transaction network include reduced operating costs for network providers and clients, as shared IP infrastructure is used, instead of maintaining a separate IP and X.25 network
    corecore