3,320 research outputs found

    Deep learning based approaches for imitation learning.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behaviour by learning from observations. The field is rapidly gaining attention due to recent advances in computational and communication capabilities as well as rising demand for intelligent applications. The goal of imitation learning is to describe the desired behaviour by providing demonstrations rather than instructions. This enables agents to learn complex behaviours with general learning methods that require minimal task specific information. However, imitation learning faces many challenges. The objective of this thesis is to advance the state of the art in imitation learning by adopting deep learning methods to address two major challenges of learning from demonstrations. Firstly, representing the demonstrations in a manner that is adequate for learning. We propose novel Convolutional Neural Networks (CNN) based methods to automatically extract feature representations from raw visual demonstrations and learn to replicate the demonstrated behaviour. This alleviates the need for task specific feature extraction and provides a general learning process that is adequate for multiple problems. The second challenge is generalizing a policy over unseen situations in the training demonstrations. This is a common problem because demonstrations typically show the best way to perform a task and don't offer any information about recovering from suboptimal actions. Several methods are investigated to improve the agent's generalization ability based on its initial performance. Our contributions in this area are three fold. Firstly, we propose an active data aggregation method that queries the demonstrator in situations of low confidence. Secondly, we investigate combining learning from demonstrations and reinforcement learning. A deep reward shaping method is proposed that learns a potential reward function from demonstrations. Finally, memory architectures in deep neural networks are investigated to provide context to the agent when taking actions. Using recurrent neural networks addresses the dependency between the state-action sequences taken by the agent. The experiments are conducted in simulated environments on 2D and 3D navigation tasks that are learned from raw visual data, as well as a 2D soccer simulator. The proposed methods are compared to state of the art deep reinforcement learning methods. The results show that deep learning architectures can learn suitable representations from raw visual data and effectively map them to atomic actions. The proposed methods for addressing generalization show improvements over using supervised learning and reinforcement learning alone. The results are thoroughly analysed to identify the benefits of each approach and situations in which it is most suitable

    Examination of Training for Individuals Using ABA With Students Diagnosed With ASD

    Get PDF
    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects the social communication and behaviours of individuals diagnosed; Applied Behavioural Analysis (ABA) is an evidence-based treatment for individuals with ASD and a teaching strategy that breaks down skills into smaller steps by using prompting and reinforcement (Mayer, Sulzer-Azaroff, & Wallace, 2014). Although the Ontario Ministry of Educationʼs (OME, 2007) Policy/Program Memorandum 140 (PPM-140) identifies ABA as a teaching method for educators, some parents are concerned that educational assistants who work one-on-one with students with ASD are not skilled enough (Nanowski, 2017). For the 2017-2018 school year in Ontario, a pilot project was conducted to increase the training of educational assistants through online learning programs (OME, 2017). The project focused on ABA-based professional development (PD) and sought to identify most effective types of PD and if experiential learning occurs. This paper examined the types of policies/PD opportunities offered within Canada and specific parts of the United States. Data analysis revealed each region had a different way of explaining its respective policy on teaching students with ASD; some clearly identified ABA as an evidence-based practice, some used tools based on ABA, while others focused only on inclusive education. Experiential Learning Theoryʼs 4 steps—experiencing, reflecting, thinking, and acting (Yeganeh & Kolb, 2009)—were fully implemented within the PD of teaching staff concerning ABA and ASD in a few regions. To improve outcomes, each region can focus on integrating PD that completes the experiential learning cycle

    Writer\u27s block: A crisis in business writing

    Get PDF

    Bio­-inspired approaches to the control and modelling of an anthropomimetic robot

    Get PDF
    Introducing robots into human environments requires them to handle settings designed specifically for human size and morphology, however, large, conventional humanoid robots with stiff, high powered joint actuators pose a significant danger to humans. By contrast, “anthropomimetic” robots mimic both human morphology and internal structure; skeleton, muscles, compliance and high redundancy. Although far safer, their resultant compliant structure presents a formidable challenge to conventional control. Here we review, and seek to address, characteristic control issues of this class of robot, whilst exploiting their biomimetic nature by drawing upon biological motor control research. We derive a novel learning controller for discovering effective reaching actions created through sustained activation of one or more muscle synergies, an approach which draws upon strong, recent evidence from animal and humans studies, but is almost unexplored to date in musculoskeletal robot literature. Since the best synergies for a given robot will be unknown, we derive a deliberately simple reinforcement learning approach intended to allow their emergence, in particular those patterns which aid linearization of control. We also draw upon optimal control theories to encourage the emergence of smoother movement by incorporating signal dependent noise and trial repetition. In addition, we argue the utility of developing a detailed dynamic model of a complete robot and present a stable, physics-­‐‑based model, of the anthropomimetic ECCERobot, running in real time with 55 muscles and 88 degrees of freedom. Using the model, we find that effective reaching actions can be learned which employ only two sequential motor co-­‐‑activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-­‐‑activations can be reconstructed to significant accuracy using weighted combinations of only 13 common fragments, labelled “candidate synergies”. Using these synergies as drivable units the same controller learns the same task both faster and better, however, other reaching tasks perform less well, proportional to dissimilarity; we therefore propose that modifications enabling emergence of a more generic set of synergies are required. Finally, we propose a continuous controller for the robot, based on model predictive control, incorporating our model as a predictive component for state estimation, delay-­‐‑ compensation and planning, including merging of the robot and sensed environment into a single model. We test the delay compensation mechanism by controlling a second copy of the model acting as a proxy for the real robot, finding that performance is significantly improved if a precise degree of compensation is applied and show how rapidly an un-­‐‑compensated controller fails as the model accuracy degrades
    corecore