1,414 research outputs found

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    User Grouping and Power Allocation in NOMA Systems : A Reinforcement Learning-Based Solution

    Get PDF
    Author's accepted manuscript.Available from 05/09/2021.acceptedVersio

    Cooperative Agent Systems: Artificial Agents Play the Ultimatum Game

    Get PDF
    We explore computational approaches for artificial agents to play the ultimatum game. We compare our agents\u27 behavior with that predicted by classical game theory, as well as behavior found in experimental (or behavioral) economics investigations. In particular, we study the following questions: How do artificial agents perform in playing the ultimatum game against fixed rules, dynamic rules, and rotating rules? How do coevolving artificial agents perform? Will learning software agents do better? What is the value of intelligence? What will happen when smart learning agents play against dumb (no-learning) agents? What will be the impact of agent memory size on performance? This exploratory study provides experimental results pertaining to these questions

    Stochastic arrays and learning networks

    Get PDF
    This thesis presents a study of stochastic arrays and learning networks. These arrays will be shown to consist of simple elements utilising probabilistic coding techniques which may interact with a random and noisy environment to produce useful results. Such networks have generated considerable interest since it is possible to design large parallel self-organising arrays of these elements which are trained by example rather than explicit instruction. Once the learning process has been completed, they then have the potential ability to form generalisations, perform global optimisation of traditionally difficult problems such as routing and incorporate an associative memory capability which can enable such tasks as image recognition and reconstruction to be performed, even when given a partial or noisy view of the target. Since the method of operation of such elements is thought to emulate the basic properties of the neurons of the brain, these arrays have been termed neural 'networks. The research demonstrates the use of stochastic elements for digital signal processing by presenting a novel systolic array, utilising a simple, replicated cell structure, which is shown to perform the operations of Cyclic Correlation and the Discrete Fourier Transform on inherently random and noisy probabilistic single bit inputs. This work is then extended into the field of stochastic learning automata and to neural networks by examining the Associative Reward-Punish (A(_R-P)) pattern recognising learning automaton. The thesis concludes that all the networks described may potentially be generalised to simple variations of one standard probabilistic element utilising stochastic coding, whose properties resemble those of biological neurons. A novel study is presented which describes how a powerful deterministic algorithm, previously considered to be biologically unviable due to its nature, may be represented in this way. It is expected that combinations of these methods may lead to a series of useful hybrid techniques for training networks. The nature of the element generalisation is particularly important as it reveals the potential for encoding successful algorithms in cheap, simple hardware with single bit interconnections. No claim is made that the particular algorithms described are those actually utilised by the brain, only to demonstrate that those properties observed of biological neurons are capable of endowing collective computational ability and that actual biological algorithms may perhaps then become apparent when viewed in this light
    • …
    corecore