5,571 research outputs found

    Learning with Constraint Learning: New Perspective, Solution Strategy and Various Applications

    Full text link
    The complexity of learning problems, such as Generative Adversarial Network (GAN) and its variants, multi-task and meta-learning, hyper-parameter learning, and a variety of real-world vision applications, demands a deeper understanding of their underlying coupling mechanisms. Existing approaches often address these problems in isolation, lacking a unified perspective that can reveal commonalities and enable effective solutions. Therefore, in this work, we proposed a new framework, named Learning with Constraint Learning (LwCL), that can holistically examine challenges and provide a unified methodology to tackle all the above-mentioned complex learning and vision problems. Specifically, LwCL is designed as a general hierarchical optimization model that captures the essence of these diverse learning and vision problems. Furthermore, we develop a gradient-response based fast solution strategy to overcome optimization challenges of the LwCL framework. Our proposed framework efficiently addresses a wide range of applications in learning and vision, encompassing three categories and nine different problem types. Extensive experiments on synthetic tasks and real-world applications verify the effectiveness of our approach. The LwCL framework offers a comprehensive solution for tackling complex machine learning and computer vision problems, bridging the gap between theory and practice

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201

    Case-based maintenance : Structuring and incrementing the Case.

    No full text
    International audienceTo avoid performance degradation and maintain the quality of results obtained by the case-based reasoning (CBR) systems, maintenance becomes necessary, especially for those systems designed to operate over long periods and which must handle large numbers of cases. CBR systems cannot be preserved without scanning the case base. For this reason, the latter must undergo maintenance operations.The techniques of case base’s dimension optimization is the analog of instance reduction size methodology (in the machine learning community). This study links these techniques by presenting case-based maintenance in the framework of instance based reduction, and provides: first an overview of CBM studies, second, a novel method of structuring and updating the case base and finally an application of industrial case is presented.The structuring combines a categorization algorithm with a measure of competence CM based on competence and performance criteria. Since the case base must progress over time through the addition of new cases, an auto-increment algorithm is installed in order to dynamically ensure the structuring and the quality of a case base. The proposed method was evaluated through a case base from an industrial plant. In addition, an experimental study of the competence and the performance was undertaken on reference benchmarks. This study showed that the proposed method gives better results than the best methods currently found in the literature

    Generalization Through the Lens of Learning Dynamics

    Full text link
    A machine learning (ML) system must learn not only to match the output of a target function on a training set, but also to generalize to novel situations in order to yield accurate predictions at deployment. In most practical applications, the user cannot exhaustively enumerate every possible input to the model; strong generalization performance is therefore crucial to the development of ML systems which are performant and reliable enough to be deployed in the real world. While generalization is well-understood theoretically in a number of hypothesis classes, the impressive generalization performance of deep neural networks has stymied theoreticians. In deep reinforcement learning (RL), our understanding of generalization is further complicated by the conflict between generalization and stability in widely-used RL algorithms. This thesis will provide insight into generalization by studying the learning dynamics of deep neural networks in both supervised and reinforcement learning tasks.Comment: PhD Thesi

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Get PDF
    Global optimization is an essential part of any kind of system. Various algorithms have been proposed that try to imitate the learning and problem solving abilities of the nature up to certain level. The main idea of all nature-inspired algorithms is to generate an interconnected network of individuals, a population. Although most of unconstrained optimization problems can be easily handled with Evolutionary Algorithms (EA), constrained optimization problems (COPs) are very complex. In this paper, a comprehensive literature review will be presented which summarizes the constraint handling techniques for COP

    Pain-Inspired Intrinsic Reward For Deep Reinforcement Learning

    Get PDF
    abstract: Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon my research of sequential data modeling and modern recurrent neural networks. I also develop deep reinforcement learning methods whose rewards are generated by self-supervised training and intrinsic signals. The main objective is to work towards the development of resilient robots that can learn to anticipate and avoid damaging interactions by combining visual and proprioceptive cues from internal sensors. The introduced solutions are inspired by pain pathways in humans and animals, because such pathways are known to guide decision-making processes and promote self-preservation. A new "robot dodge ball' benchmark is introduced in order to test the validity of the developed algorithms in dynamic environments.Dissertation/ThesisMasters Thesis Computer Science 201

    A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems

    Get PDF
    Producción CientíficaIn recent years, the number of embedded computing devices connected to the Internet has exponentially increased. At the same time, new applications are becoming more complex and computationally demanding, which can be a problem for devices, especially when they are battery powered. In this context, the concepts of computation offloading and edge computing, which allow applications to be fully or partially offloaded and executed on servers close to the devices in the network, have arisen and received increasing attention. Then, the design of algorithms to make the decision of which applications or tasks should be offloaded, and where to execute them, is crucial. One of the options that has been gaining momentum lately is the use of Reinforcement Learning (RL) and, in particular, Deep Reinforcement Learning (DRL), which enables learning optimal or near-optimal offloading policies adapted to each particular scenario. Although the use of RL techniques to solve the computation offloading problem in edge systems has been covered by some surveys, it has been done in a limited way. For example, some surveys have analysed the use of RL to solve various networking problems, with computation offloading being one of them, but not the primary focus. Other surveys, on the other hand, have reviewed techniques to solve the computation offloading problem, being RL just one of the approaches considered. To the best of our knowledge, this is the first survey that specifically focuses on the use of RL and DRL techniques for computation offloading in edge computing system. We present a comprehensive and detailed survey, where we analyse and classify the research papers in terms of use cases, network and edge computing architectures, objectives, RL algorithms, decision-making approaches, and time-varying characteristics considered in the analysed scenarios. In particular, we include a series of tables to help researchers identify relevant papers based on specific features, and analyse which scenarios and techniques are most frequently considered in the literature. Finally, this survey identifies a number of research challenges, future directions and areas for further study.Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42, PID2021-124463OBI00 y RED2018-102585-T, financiados por MCIN/AEI/10.13039/501100011033
    corecore