2,014 research outputs found

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Assist-as-needed impedance control strategy for a wearable ankle robotic orthosis

    Get PDF
    The use of robots in rehabilitation attempts an effective, compliant, and time-efficient gait recovery while adapting the assistance to the user's needs. Assist-as-needed strategies (AAN), such as adaptive impedance control, have been reported as prominent strategies to enable this recovery effects. This study proposes an interaction-based assist-as-needed impedance control strategy for an ankle robotic orthosis that adapts the robotic assistance by changing the Human-Robot interaction stiffness. The adaptability of the interaction stiffness allows the real-time passage from passive assistance to an active one, approaching AAN gait training. The interaction stiffness was successfully estimated by linear regression of the Human-Robot interaction torque vs angle trajectory curve. From the validation with seven able-bodied subjects, we verified the suitability of this adaptive impedance control for a more compliant, natural, and comfortable motion than the trajectory tracking control. Moreover, the proposed strategy considers the users' motion intention and encourages them to interact closely with the robotic device while guiding their ankle trajectory according to desired trajectories. These achievements contribute to AAN gait training.This work has been supported by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from Fundação para a Ciência e Tecnologia with the project SmartOs under Grant NORTE-01-0145-FEDER-030386, and through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941

    Gamified Music Learning System with VR Force Feedback for Rehabilitation

    Get PDF
    Many conditions cause loss of coordination and motor capabilities in the extremities. One such condition is stroke, which affects approximately 15 million people worldwide each year. [1] Many robotic systems have been developed to assist in the physical and neurological rehabilitation of patients who have suffered a stroke. As a result of this project an actuator to be used for hand rehabilitation using visual processing and Bowden cables was designed. This project aims to use the design of the actuator combined with gamification elements to create an interface to be used in future robotic rehabilitation systems as well as address the compliance problem found in rehabilitation

    Gamified Music Learning System with VR Force Feedback for

    Get PDF
    Many conditions cause loss of coordination and motor capabilities in the extremities. One such condition is stroke, which affects approximately 15 million people worldwide each year. Many robotic systems have been developed to assist in the physical and neurological rehabilitation of patients who have suffered a stroke. As a result of this project an actuator, to be used for hand rehabilitation, by means of visual processing and Bowden cables, was designed. This project aims to use the design of the actuator combined with gamification elements to create an interface to be used in future robotic rehabilitation systems as well as address the compliance problem found in rehabilitation

    Assistive Robot with an AI-Based Application for the Reinforcement of Activities of Daily Living: Technical Validation with Users Affected by Neurodevelopmental Disorders

    Get PDF
    In this work, we propose the first study of a technical validation of an assistive robotic platform, which has been designed to assist people with neurodevelopmental disorders. The platform is called LOLA2 and it is equipped with an artificial intelligence-based application to reinforce the learning of daily life activities in people with neurodevelopmental problems. LOLA2 has been integrated with an ROS-based navigation system and a user interface for healthcare professionals and their patients to interact with it. Technically, we have been able to embed all these modules into an NVIDIA Jetson Xavier board, as well as an artificial intelligence agent for online action detection (OAD). This OAD approach provides a detailed report on the degree of performance of a set of daily life activities that are being learned or reinforced by users. All the human–robot interaction process to work with users with neurodevelopmental disorders has been designed by a multidisciplinary team. Among its main features are the ability to control the robot with a joystick, a graphical user interface application that shows video tutorials with the activities to reinforce or learn, and the ability to monitor the progress of the users as they complete tasks. The main objective of the assistive robotic platform LOLA2 is to provide a system that allows therapists to track how well the users understand and perform daily tasks. This paper focuses on the technical validation of the proposed platform and its application. To do so, we have carried out a set of tests with four users with neurodevelopmental problems and special physical conditions under the supervision of the corresponding therapeutic personnel. We present detailed results of all interventions with end users, analyzing the usability, effectiveness, and limitations of the proposed technology. During its initial technical validation with real users, LOLA2 was able to detect the actions of users with disabilities with high precision. It was able to distinguish four assigned daily actions with high accuracy, but some actions were more challenging due to the physical limitations of the users. Generally, the presence of the robot in the therapy sessions received excellent feedback from medical professionals as well as patients. Overall, this study demonstrates that our developed robot is capable of assisting and monitoring people with neurodevelopmental disorders in performing their daily living tasks.This research was funded by project AIRPLANE, with reference PID2019-104323RB-C31, of Spain’s Ministry of Science and Innovation

    Psychological and care impact of the daily use of a pediatric gait exoskeleton in children with spinal muscular atrophy

    Get PDF
    Introducción: La Atrofia Muscular Espinal Tipo II, es una enfermedad neurodegenerativa de origen genético que cursa con debilidad muscular y provoca deterioro motor e incapacidad para caminar en los niños. Se relaciona con graves problemas respiratorios, musculoesqueléticos, gastrointestinales y otros de salud y cuidado. Los exoesqueletos robóticos de miembros inferiores son dispositivos médicos que ayudan a la marcha de pacientes que no pueden caminar. Nuestro objetivo fue evaluar el impacto en la dimensión psicológica y de autocuidado derivado del uso del exoesqueleto ATLAS en el hogar en niños con Atrofia Muscular Espinal Tipo II. Metodología: tres niños con Atrofia Muscular Espinal Tipo II utilizaron el exoesqueleto en casa cinco días a la semana durante un período de dos meses para caminar y realizar actividades. Se realizó una evaluación del autocuidado de enfermería antes y durante el uso del dispositivo para evaluar los cambios en los resultados del autocuidado y los diagnósticos de enfermería. Se realizaron entrevistas en profundidad y semiestructuradas, además de la observación durante las sesiones, para evaluar el impacto de la experiencia en la dimensión psicológica de los participantes. Resultados: el uso del exoesqueleto produjo cambios en los condicionantes básicos de los niños y una mejora en los organismos de autocuidado. También aparecieron nuevas demandas de autocuidado. Tres de los diez diagnósticos de enfermería fueron resueltos. Asimismo, los niños mostraron una buena tolerancia a la actividad además de una mejora funcional evaluada en el tercer participante. Los niños y los cuidadores principales valoraron la experiencia como positiva y significativa. Los niños tenían una mayoría de emociones positivas, y se incrementó su autonomía y comportamiento social y exploratorio. Conclusiones: la tecnología del exoesqueleto podría considerarse como un nuevo recurso para el cuidado de niños con enfermedades neuromusculares. Su uso tuvo un impacto positivo tanto en las variables de autocuidado como en la dimensión psicológica de tres niños con atrofia muscular espinal tipo II. Aunque este estudio aporta ya evidencia, más estudios sobre el tema aportarían un mayor conocimiento

    Gait Training using Pneumatically Actuated Robot System

    Get PDF
    Powered exoskeleton device for gait rehabilitation has been designed and realized, together with proper control architecture. Its DOFs allow free leg motion, while the patient walks on a treadmill with its weight, completely or partially supported by the suspension system. The use of pneumatic actuators for actuation of this rehabilitation system is reasonable, because they offer high force output, good backdrivability, and good position and force control, at a relatively low cost. The effectiveness of the developed rehabilitation system and proposed control architecture was experimentally tested. During the experiments, the movement was natural and smooth while the limb moves along the target trajectory

    Technologies and combination therapies for enhancing movement training for people with a disability

    Get PDF
    There has been a dramatic increase over the last decade in research on technologies for enhancing movement training and exercise for people with a disability. This paper reviews some of the recent developments in this area, using examples from a National Science Foundation initiated study of mobility research projects in Europe to illustrate important themes and key directions for future research. This paper also reviews several recent studies aimed at combining movement training with plasticity or regeneration therapies, again drawing in part from European research examples. Such combination therapies will likely involve complex interactions with motor training that must be understood in order to achieve the goal of eliminating severe motor impairment
    corecore