1,012 research outputs found

    Dynamic Network State Learning Model for Mobility Based WMSN Routing Protocol

    Get PDF
    The rising demand of wireless multimedia sensor networks (WMSNs) has motivated academia-industries to develop energy efficient, Quality of Service (QoS) and delay sensitive communication systems to meet major real-world demands like multimedia broadcast, security and surveillance systems, intelligent transport system, etc. Typically, energy efficiency, QoS and delay sensitive transmission are the inevitable requirements of WMSNs. Majority of the existing approaches either use physical layer or system level schemes that individually can’t assure optimal transmission decision to meet the demand. The cumulative efficiency of physical layer power control, adaptive modulation and coding and system level dynamic power management (DPM) are found significant to achieve these demands. With this motivation, in this paper a unified model is derived using enhanced reinforcement learning and stochastic optimization method. Exploiting physical as well as system level network state information, our proposed dynamic network state learning model (NSLM) applies stochastic optimization to learn network state-activity that derives an optimal DPM policy and PHY switching scheduling. NSLM applies known as well as unknown network state variables to derive transmission and PHY switching policy, where it considers DPM as constrained Markov decision process (MDP) problem. Here,the use of Hidden Markov Model and Lagrangian relaxation has made NSLM convergence swift that assures delay-sensitive, QoS enriched, and bandwidth and energy efficient transmission for WMSN under uncertain network conditions. Our proposed NSLM DPM model has outperformed traditional Q-Learning based DPM in terms of buffer cost, holding cost, overflow, energy consumption and bandwidth utilization

    Scheduling and Power Control for Wireless Multicast Systems via Deep Reinforcement Learning

    Full text link
    Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast network's performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.Comment: arXiv admin note: substantial text overlap with arXiv:1910.0530

    Distributed Learning Policies for Power Allocation in Multiple Access Channels

    Full text link
    We analyze the problem of distributed power allocation for orthogonal multiple access channels by considering a continuous non-cooperative game whose strategy space represents the users' distribution of transmission power over the network's channels. When the channels are static, we find that this game admits an exact potential function and this allows us to show that it has a unique equilibrium almost surely. Furthermore, using the game's potential property, we derive a modified version of the replicator dynamics of evolutionary game theory which applies to this continuous game, and we show that if the network's users employ a distributed learning scheme based on these dynamics, then they converge to equilibrium exponentially quickly. On the other hand, a major challenge occurs if the channels do not remain static but fluctuate stochastically over time, following a stationary ergodic process. In that case, the associated ergodic game still admits a unique equilibrium, but the learning analysis becomes much more complicated because the replicator dynamics are no longer deterministic. Nonetheless, by employing results from the theory of stochastic approximation, we show that users still converge to the game's unique equilibrium. Our analysis hinges on a game-theoretical result which is of independent interest: in finite player games which admit a (possibly nonlinear) convex potential function, the replicator dynamics (suitably modified to account for nonlinear payoffs) converge to an eps-neighborhood of an equilibrium at time of order O(log(1/eps)).Comment: 11 pages, 8 figures. Revised manuscript structure and added more material and figures for the case of stochastically fluctuating channels. This version will appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Wireless Communication
    • …
    corecore