33,818 research outputs found

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem

    Fuzzy State Aggregation and Off-Policy Reinforcement Learning for Stochastic Environments

    Get PDF
    Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn even as the environment it is operating in changes. This ability to learn in an unsupervised manner in a changing environment is applicable in complex domains through the use of function approximation of the domain’s policy. The function approximation presented here is that of fuzzy state aggregation. This article presents the use of fuzzy state aggregation with the current policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF), exceeding the learning rate and performance of the combined fuzzy state aggregation and Q-learning reinforcement learning. Results of testing using the TileWorld domain demonstrate the policy hill climbing performs better than the existing Q-learning implementations

    Online Regret Bounds for Undiscounted Continuous Reinforcement Learning

    Full text link
    We derive sublinear regret bounds for undiscounted reinforcement learning in continuous state space. The proposed algorithm combines state aggregation with the use of upper confidence bounds for implementing optimism in the face of uncertainty. Beside the existence of an optimal policy which satisfies the Poisson equation, the only assumptions made are Holder continuity of rewards and transition probabilities

    Dynamic Fair Federated Learning Based on Reinforcement Learning

    Full text link
    Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples. However, the heterogeneity of data in federated learning can lead to unfair representation of the global model across different devices. To address the fairness issue in federated learning, we propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL. DQFFL aims to mitigate the discrepancies in device aggregation and enhance the fairness of treatment for all groups involved in federated learning. To quantify fairness, DQFFL leverages the performance of the global federated model on each device and incorporates {\alpha}-fairness to transform the preservation of fairness during federated aggregation into the distribution of client weights in the aggregation process. Considering the sensitivity of parameters in measuring fairness, we propose to utilize reinforcement learning for dynamic parameters during aggregation. Experimental results demonstrate that our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed

    Joint Transaction Transmission and Channel Selection in Cognitive Radio Based Blockchain Networks: A Deep Reinforcement Learning Approach

    Full text link
    To ensure that the data aggregation, data storage, and data processing are all performed in a decentralized but trusted manner, we propose to use the blockchain with the mining pool to support IoT services based on cognitive radio networks. As such, the secondary user can send its sensing data, i.e., transactions, to the mining pools. After being verified by miners, the transactions are added to the blocks. However, under the dynamics of the primary channel and the uncertainty of the mempool state of the mining pool, it is challenging for the secondary user to determine an optimal transaction transmission policy. In this paper, we propose to use the deep reinforcement learning algorithm to derive an optimal transaction transmission policy for the secondary user. Specifically, we adopt a Double Deep-Q Network (DDQN) that allows the secondary user to learn the optimal policy. The simulation results clearly show that the proposed deep reinforcement learning algorithm outperforms the conventional Q-learning scheme in terms of reward and learning speed

    Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments

    Get PDF
    Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn even as the operating environment changes. Additionally, by applying reinforcement learning to multiple cooperative software agents (a multi-agent system) not only allows each individual agent to learn from its own experience, but also opens up the opportunity for the individual agents to learn from the other agents in the system, thus accelerating the rate of learning. This research presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with the fastest policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function approximation is tested in two stochastic environments: Tileworld and the simulated robot soccer domain, RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC learns quicker and performs better than combined fuzzy state aggregation and Q-learning reinforcement learning alone. Results from the multi-agent RoboCup domain again illustrate that the policy hill climbing algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further enhanced by allowing the agents to share their experience through a weighted strategy sharing
    • …
    corecore