1,218 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem

    Get PDF
    The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc

    Parallel distribution compensation PID based on Takagi-Sugeno fuzzy model applied on egyptian load frequency control

    Get PDF
    This paper presents a new technique for a Takagi-Sugeno (TS) fuzzy parallels distribution compensation-PID'S (TSF-PDC-PID'S) to improve the performance of Egyptian load frequency control (ELFC). In this technique, the inputs to a TS Fuzzy model are the parameters of the change of operating points. The TS Fuzzy model can definite the suitable PID control for a certain operating point. The parameters of PID'S controllers are obtained by ant colony optimization (ACO) technique in each operating point based on an effective cost function. The system controlled by the proposed TSF-PDC-PID’S is investigated under different types of disturbances, uncertainty and parameters variations. The simulation results ensure that the TSF-PDC-PID'S can update the suitable PID controller at several operating points so, it has a good dynamic response under many types of disturbances compared to fixed Optimal PID controller
    corecore