9,745 research outputs found

    Learning Classical Planning Strategies with Policy Gradient

    Get PDF
    A common paradigm in classical planning is heuristic forward search. Forward search planners often rely on simple best-first search which remains fixed throughout the search process. In this paper, we introduce a novel search framework capable of alternating between several forward search approaches while solving a particular planning problem. Selection of the approach is performed using a trainable stochastic policy, mapping the state of the search to a probability distribution over the approaches. This enables using policy gradient to learn search strategies tailored to a specific distributions of planning problems and a selected performance metric, e.g. the IPC score. We instantiate the framework by constructing a policy space consisting of five search approaches and a two-dimensional representation of the planner's state. Then, we train the system on randomly generated problems from five IPC domains using three different performance metrics. Our experimental results show that the learner is able to discover domain-specific search strategies, improving the planner's performance relative to the baselines of plain best-first search and a uniform policy.Comment: Accepted for ICAPS 201

    Truncating Temporal Differences: On the Efficient Implementation of TD(lambda) for Reinforcement Learning

    Full text link
    Temporal difference (TD) methods constitute a class of methods for learning predictions in multi-step prediction problems, parameterized by a recency factor lambda. Currently the most important application of these methods is to temporal credit assignment in reinforcement learning. Well known reinforcement learning algorithms, such as AHC or Q-learning, may be viewed as instances of TD learning. This paper examines the issues of the efficient and general implementation of TD(lambda) for arbitrary lambda, for use with reinforcement learning algorithms optimizing the discounted sum of rewards. The traditional approach, based on eligibility traces, is argued to suffer from both inefficiency and lack of generality. The TTD (Truncated Temporal Differences) procedure is proposed as an alternative, that indeed only approximates TD(lambda), but requires very little computation per action and can be used with arbitrary function representation methods. The idea from which it is derived is fairly simple and not new, but probably unexplored so far. Encouraging experimental results are presented, suggesting that using lambda &gt 0 with the TTD procedure allows one to obtain a significant learning speedup at essentially the same cost as usual TD(0) learning.Comment: See http://www.jair.org/ for any accompanying file
    corecore