3,823 research outputs found

    Enablingmarkovian representations under imperfect information

    Get PDF
    Markovian systems are widely used in reinforcement learning (RL), when the successful completion of a task depends exclusively on the last interaction between an autonomous agent and its environment. Unfortunately, real-world instructions are typically complex and often better described as non-Markovian. In this paper we present an extension method that allows solving partially-observable non-Markovian reward decision processes (PONMRDPs) by solving equivalent Markovian models. This potentially facilitates Markovian-based state-of-the-art techniques, including RL, to find optimal behaviours for problems best described as PONMRDP. We provide formal optimality guarantees of our extension methods together with a counterexample illustrating that naive extensions from existing techniques in fully-observable environments cannot provide such guarantees

    Reinforcement Learning in Non-Markovian Environments

    Full text link
    Following the novel paradigm developed by Van Roy and coauthors for reinforcement learning in arbitrary non-Markovian environments, we propose a related formulation inspired by classical stochastic control that reduces the problem to recursive computation of approximate sufficient statistics.Comment: 15 pages, submitted to Systems and Control Letter

    Active Finite Reward Automaton Inference and Reinforcement Learning Using Queries and Counterexamples

    Full text link
    Despite the fact that deep reinforcement learning (RL) has surpassed human-level performances in various tasks, it still has several fundamental challenges. First, most RL methods require intensive data from the exploration of the environment to achieve satisfactory performance. Second, the use of neural networks in RL renders it hard to interpret the internals of the system in a way that humans can understand. To address these two challenges, we propose a framework that enables an RL agent to reason over its exploration process and distill high-level knowledge for effectively guiding its future explorations. Specifically, we propose a novel RL algorithm that learns high-level knowledge in the form of a finite reward automaton by using the L* learning algorithm. We prove that in episodic RL, a finite reward automaton can express any non-Markovian bounded reward functions with finitely many reward values and approximate any non-Markovian bounded reward function (with infinitely many reward values) with arbitrary precision. We also provide a lower bound for the episode length such that the proposed RL approach almost surely converges to an optimal policy in the limit. We test this approach on two RL environments with non-Markovian reward functions, choosing a variety of tasks with increasing complexity for each environment. We compare our algorithm with the state-of-the-art RL algorithms for non-Markovian reward functions, such as Joint Inference of Reward machines and Policies for RL (JIRP), Learning Reward Machine (LRM), and Proximal Policy Optimization (PPO2). Our results show that our algorithm converges to an optimal policy faster than other baseline methods
    • …
    corecore