45,619 research outputs found

    Reinforcement learning for combining relevance feedback techniques

    Full text link
    Relevance feedback (RF) is an interactive process which refines the retrievals by utilizing user’s feedback history. Most researchers strive to develop new RF techniques and ignore the advantages of existing ones. In this paper, we propose an image relevance reinforcement learning (IRRL) model for integrating existing RF techniques. Various integration schemes are presented and a long-term shared memory is used to exploit the retrieval experience from multiple users. Also, a concept digesting method is proposed to reduce the complexity of storage demand. The experimental results manifest that the integration of multiple RF approaches gives better retrieval performance than using one RF technique alone, and that the sharing of relevance knowledge between multiple query sessions also provides significant contributions for improvement. Further, the storage demand is significantly reduced by the concept digesting technique. This shows the scalability of the proposed model against a growing-size database

    A Reinforcement Learning-driven Translation Model for Search-Oriented Conversational Systems

    Full text link
    Search-oriented conversational systems rely on information needs expressed in natural language (NL). We focus here on the understanding of NL expressions for building keyword-based queries. We propose a reinforcement-learning-driven translation model framework able to 1) learn the translation from NL expressions to queries in a supervised way, and, 2) to overcome the lack of large-scale dataset by framing the translation model as a word selection approach and injecting relevance feedback in the learning process. Experiments are carried out on two TREC datasets and outline the effectiveness of our approach.Comment: This is the author's pre-print version of the work. It is posted here for your personal use, not for redistribution. Please cite the definitive version which will be published in Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI - ISBN: 978-1-948087-75-

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Combining Experience Replay with Exploration by Random Network Distillation

    Full text link
    Our work is a simple extension of the paper "Exploration by Random Network Distillation". More in detail, we show how to efficiently combine Intrinsic Rewards with Experience Replay in order to achieve more efficient and robust exploration (with respect to PPO/RND) and consequently better results in terms of agent performances and sample efficiency. We are able to do it by using a new technique named Prioritized Oversampled Experience Replay (POER), that has been built upon the definition of what is the important experience useful to replay. Finally, we evaluate our technique on the famous Atari game Montezuma's Revenge and some other hard exploration Atari games.Comment: 8 pages, 6 figures, accepted as full-paper at IEEE Conference on Games (CoG) 201

    NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval

    Full text link
    Pseudo-relevance feedback (PRF) is commonly used to boost the performance of traditional information retrieval (IR) models by using top-ranked documents to identify and weight new query terms, thereby reducing the effect of query-document vocabulary mismatches. While neural retrieval models have recently demonstrated strong results for ad-hoc retrieval, combining them with PRF is not straightforward due to incompatibilities between existing PRF approaches and neural architectures. To bridge this gap, we propose an end-to-end neural PRF framework that can be used with existing neural IR models by embedding different neural models as building blocks. Extensive experiments on two standard test collections confirm the effectiveness of the proposed NPRF framework in improving the performance of two state-of-the-art neural IR models.Comment: Full paper in EMNLP 201

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC
    corecore