533 research outputs found

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Adaptive Storage Optimization Scheme for Blockchain-IIoT Applications Using Deep Reinforcement Learning

    Get PDF
    Blockchain-IIoT integration into industrial processes promises greater security, transparency, and traceability. However, this advancement faces significant storage and scalability issues with existing blockchain technologies. Each peer in the blockchain network maintains a full copy of the ledger which is updated through consensus. This full replication approach places a burden on the storage space of the peers and would quickly outstrip the storage capacity of resource-constrained IIoT devices. Various solutions utilizing compression, summarization or different storage schemes have been proposed in literature. The use of cloud resources for blockchain storage has been extensively studied in recent years. Nonetheless, block selection remains a substantial challenge associated with cloud resources and blockchain integration. This paper proposes a deep reinforcement learning (DRL) approach as an alternative to solving the block selection problem, which involves identifying the blocks to be transferred to the cloud. We propose a DRL approach to solve our problem by converting the multi-objective optimization of block selection into a Markov decision process (MDP). We design a simulated blockchain environment for training and testing our proposed DRL approach. We utilize two DRL algorithms, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO) to solve the block selection problem and analyze their performance gains. PPO and A2C achieve 47.8% and 42.9% storage reduction on the blockchain peer compared to the full replication approach of conventional blockchain systems. The slowest DRL algorithm, A2C, achieves a run-time 7.2 times shorter than the benchmark evolutionary algorithms used in earlier works, which validates the gains introduced by the DRL algorithms. The simulation results further show that our DRL algorithms provide an adaptive and dynamic solution to the time-sensitive blockchain-IIoT environment

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching
    • …
    corecore