25,451 research outputs found

    Reinforcement learning in populations of spiking neurons

    Get PDF
    Population coding is widely regarded as a key mechanism for achieving reliable behavioral responses in the face of neuronal variability. But in standard reinforcement learning a flip-side becomes apparent. Learning slows down with increasing population size since the global reinforcement becomes less and less related to the performance of any single neuron. We show that, in contrast, learning speeds up with increasing population size if feedback about the populationresponse modulates synaptic plasticity in addition to global reinforcement. The two feedback signals (reinforcement and population-response signal) can be encoded by ambient neurotransmitter concentrations which vary slowly, yielding a fully online plasticity rule where the learning of a stimulus is interleaved with the processing of the subsequent one. The assumption of a single additional feedback mechanism therefore reconciles biological plausibility with efficient learning

    The hardware implementation of an artificial neural network using stochastic pulse rate encoding principles

    Get PDF
    In this thesis the development of a hardware artificial neuron device and artificial neural network using stochastic pulse rate encoding principles is considered. After a review of neural network architectures and algorithmic approaches suitable for hardware implementation, a critical review of hardware techniques which have been considered in analogue and digital systems is presented. New results are presented demonstrating the potential of two learning schemes which adapt by the use of a single reinforcement signal. The techniques for computation using stochastic pulse rate encoding are presented and extended with new novel circuits relevant to the hardware implementation of an artificial neural network. The generation of random numbers is the key to the encoding of data into the stochastic pulse rate domain. The formation of random numbers and multiple random bit sequences from a single PRBS generator have been investigated. Two techniques, Simulated Annealing and Genetic Algorithms, have been applied successfully to the problem of optimising the configuration of a PRBS random number generator for the formation of multiple random bit sequences and hence random numbers. A complete hardware design for an artificial neuron using stochastic pulse rate encoded signals has been described, designed, simulated, fabricated and tested before configuration of the device into a network to perform simple test problems. The implementation has shown that the processing elements of the artificial neuron are small and simple, but that there can be a significant overhead for the encoding of information into the stochastic pulse rate domain. The stochastic artificial neuron has the capability of on-line weight adaption. The implementation of reinforcement schemes using the stochastic neuron as a basic element are discussed

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Fast and robust learning by reinforcement signals: explorations in the insect brain

    Get PDF
    We propose a model for pattern recognition in the insect brain. Departing from a well-known body of knowledge about the insect brain, we investigate which of the potentially present features may be useful to learn input patterns rapidly and in a stable manner. The plasticity underlying pattern recognition is situated in the insect mushroom bodies and requires an error signal to associate the stimulus with a proper response. As a proof of concept, we used our model insect brain to classify the well-known MNIST database of handwritten digits, a popular benchmark for classifiers. We show that the structural organization of the insect brain appears to be suitable for both fast learning of new stimuli and reasonable performance in stationary conditions. Furthermore, it is extremely robust to damage to the brain structures involved in sensory processing. Finally, we suggest that spatiotemporal dynamics can improve the level of confidence in a classification decision. The proposed approach allows testing the effect of hypothesized mechanisms rather than speculating on their benefit for system performance or confidence in its responses
    corecore