6,580 research outputs found

    A review on Neural Turing Machine

    Full text link
    One of the major objectives of Artificial Intelligence is to design learning algorithms that are executed on a general purposes computational machines such as human brain. Neural Turing Machine (NTM) is a step towards realizing such a computational machine. The attempt is made here to run a systematic review on Neural Turing Machine. First, the mind-map and taxonomy of machine learning, neural networks, and Turing machine are introduced. Next, NTM is inspected in terms of concepts, structure, variety of versions, implemented tasks, comparisons, etc. Finally, the paper discusses on issues and ends up with several future works

    A Monte Carlo Algorithm for Universally Optimal Bayesian Sequence Prediction and Planning

    Full text link
    The aim of this work is to address the question of whether we can in principle design rational decision-making agents or artificial intelligences embedded in computable physics such that their decisions are optimal in reasonable mathematical senses. Recent developments in rare event probability estimation, recursive bayesian inference, neural networks, and probabilistic planning are sufficient to explicitly approximate reinforcement learners of the AIXI style with non-trivial model classes (here, the class of resource-bounded Turing machines). Consideration of the effects of resource limitations in a concrete implementation leads to insights about possible architectures for learning systems using optimal decision makers as components.Comment: Submitted to MDPI Algorithms Special Issue "Algorithmic Complexity in Physics & Embedded Artificial Intelligences

    Advances in Natural Language Question Answering: A Review

    Full text link
    Question Answering has recently received high attention from artificial intelligence communities due to the advancements in learning technologies. Early question answering models used rule-based approaches and moved to the statistical approach to address the vastly available information. However, statistical approaches are shown to underperform in handling the dynamic nature and the variation of language. Therefore, learning models have shown the capability of handling the dynamic nature and variations in language. Many deep learning methods have been introduced to question answering. Most of the deep learning approaches have shown to achieve higher results compared to machine learning and statistical methods. The dynamic nature of language has profited from the nonlinear learning in deep learning. This has created prominent success and a spike in work on question answering. This paper discusses the successes and challenges in question answering question answering systems and techniques that are used in these challenges.Comment: arXiv admin note: text overlap with arXiv:1609.04667 by other author

    A Roadmap towards Machine Intelligence

    Full text link
    The development of intelligent machines is one of the biggest unsolved challenges in computer science. In this paper, we propose some fundamental properties these machines should have, focusing in particular on communication and learning. We discuss a simple environment that could be used to incrementally teach a machine the basics of natural-language-based communication, as a prerequisite to more complex interaction with human users. We also present some conjectures on the sort of algorithms the machine should support in order to profitably learn from the environment

    Artificial Intelligence and its Role in Near Future

    Full text link
    AI technology has a long history which is actively and constantly changing and growing. It focuses on intelligent agents, which contain devices that perceive the environment and based on which takes actions in order to maximize goal success chances. In this paper, we will explain the modern AI basics and various representative applications of AI. In the context of the modern digitalized world, AI is the property of machines, computer programs, and systems to perform the intellectual and creative functions of a person, independently find ways to solve problems, be able to draw conclusions and make decisions. Most artificial intelligence systems have the ability to learn, which allows people to improve their performance over time. The recent research on AI tools, including machine learning, deep learning and predictive analysis intended toward increasing the planning, learning, reasoning, thinking and action taking ability. Based on which, the proposed research intends towards exploring on how the human intelligence differs from the artificial intelligence. Moreover, we critically analyze what AI of today is capable of doing, why it still cannot reach human intelligence and what are the open challenges existing in front of AI to reach and outperform human level of intelligence. Furthermore, it will explore the future predictions for artificial intelligence and based on which potential solution will be recommended to solve it within next decades

    Learning Numeracy: Binary Arithmetic with Neural Turing Machines

    Full text link
    One of the main problems encountered so far with recurrent neural networks is that they struggle to retain long-time information dependencies in their recurrent connections. Neural Turing Machines (NTMs) attempt to mitigate this issue by providing the neural network with an external portion of memory, in which information can be stored and manipulated later on. The whole mechanism is differentiable end-to-end, allowing the network to learn how to utilise this long-term memory via stochastic gradient descent. This allows NTMs to infer simple algorithms directly from data sequences. Nonetheless, the model can be hard to train due to a large number of parameters and interacting components and little related work is present. In this work we use NTMs to learn and generalise two arithmetical tasks: binary addition and multiplication. These tasks are two fundamental algorithmic examples in computer science, and are a lot more challenging than the previously explored ones, with which we aim to shed some light on the real capabilities on this neural model

    (Yet) Another Theoretical Model of Thinking

    Full text link
    This paper presents a theoretical, idealized model of the thinking process with the following characteristics: 1) the model can produce complex thought sequences and can be generalized to new inputs, 2) it can receive and maintain input information indefinitely for the generation of thoughts and later use, and 3) it supports learning while executing. The crux of the model lies within the concept of internal consistency, or the generated thoughts should always be consistent with the inputs from which they are created. Its merit, apart from the capability to generate new creative thoughts from an internal mechanism, depends on the potential to help training to generalize better. This is consequently enabled by separating input information into several parts to be handled by different processing components with a focus mechanism to fetch information for each. This modularized view with the focus binds the model with the computationally capable Turing machines. And as a final remark, this paper constructively shows that the computational complexity of the model is at least, if not surpass, that of a universal Turing machine

    Open Problems in Universal Induction & Intelligence

    Full text link
    Specialized intelligent systems can be found everywhere: finger print, handwriting, speech, and face recognition, spam filtering, chess and other game programs, robots, et al. This decade the first presumably complete mathematical theory of artificial intelligence based on universal induction-prediction-decision-action has been proposed. This information-theoretic approach solidifies the foundations of inductive inference and artificial intelligence. Getting the foundations right usually marks a significant progress and maturing of a field. The theory provides a gold standard and guidance for researchers working on intelligent algorithms. The roots of universal induction have been laid exactly half-a-century ago and the roots of universal intelligence exactly one decade ago. So it is timely to take stock of what has been achieved and what remains to be done. Since there are already good recent surveys, I describe the state-of-the-art only in passing and refer the reader to the literature. This article concentrates on the open problems in universal induction and its extension to universal intelligence.Comment: 32 LaTeX page

    Neural GPUs Learn Algorithms

    Full text link
    Learning an algorithm from examples is a fundamental problem that has been widely studied. Recently it has been addressed using neural networks, in particular by Neural Turing Machines (NTMs). These are fully differentiable computers that use backpropagation to learn their own programming. Despite their appeal NTMs have a weakness that is caused by their sequential nature: they are not parallel and are are hard to train due to their large depth when unfolded. We present a neural network architecture to address this problem: the Neural GPU. It is based on a type of convolutional gated recurrent unit and, like the NTM, is computationally universal. Unlike the NTM, the Neural GPU is highly parallel which makes it easier to train and efficient to run. An essential property of algorithms is their ability to handle inputs of arbitrary size. We show that the Neural GPU can be trained on short instances of an algorithmic task and successfully generalize to long instances. We verified it on a number of tasks including long addition and long multiplication of numbers represented in binary. We train the Neural GPU on numbers with upto 20 bits and observe no errors whatsoever while testing it, even on much longer numbers. To achieve these results we introduce a technique for training deep recurrent networks: parameter sharing relaxation. We also found a small amount of dropout and gradient noise to have a large positive effect on learning and generalization

    Intelligent Biohybrid Neurotechnologies: Are They Really What They Claim?

    Full text link
    In the era of intelligent biohybrid neurotechnologies for brain repair, new fanciful terms are appearing in the scientific dictionary to define what has so far been unimaginable. As the emerging neurotechnologies are becoming increasingly polyhedral and sophisticated, should we talk about evolution and rank the intelligence of these devices?Comment: Number of pages: 15 Words in abstract: 49 Words in main text: 3265 Number of figures: 5 Number of references: 25 Keywords: artificial intelligence, biohybrid system, closed-loop control, functional brain repai
    corecore