177,952 research outputs found

    Deep reinforcement active learning for human-in-the-loop person re-identification

    Get PDF
    Most existing person re-identification(Re-ID) approaches achieve superior results based on the assumption that a large amount of pre-labelled data is usually available and can be put into training phrase all at once. However, this assumption is not applicable to most real-world deployment of the Re-ID task. In this work, we propose an alternative reinforcement learning based human-in-the-loop model which releases the restriction of pre-labelling and keeps model upgrading with progressively collected data. The goal is to minimize human annotation efforts while maximizing Re-ID performance. It works in an iteratively updating framework by refining the RL policy and CNN parameters alternately. In particular, we formulate a Deep Reinforcement Active Learning (DRAL) method to guide an agent (a model in a reinforcement learning process) in selecting training samples on-the-fly by a human user/annotator. The reinforcement learning reward is the uncertainty value of each human selected sample. A binary feedback (positive or negative) labelled by the human annotator is used to select the samples of which are used to fine-tune a pre-trained CNN Re-ID model. Extensive experiments demonstrate the superiority of our DRAL method for deep reinforcement learning based human-in-the-loop person Re-ID when compared to existing unsupervised and transfer learning models as well as active learning models

    Advances in De Novo Drug Design : From Conventional to Machine Learning Methods

    Get PDF
    De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including ma-chine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been em-ployed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and high-lights hot topics for further development.Peer reviewe
    • …
    corecore