5,652 research outputs found

    Case-based maintenance : Structuring and incrementing the Case.

    No full text
    International audienceTo avoid performance degradation and maintain the quality of results obtained by the case-based reasoning (CBR) systems, maintenance becomes necessary, especially for those systems designed to operate over long periods and which must handle large numbers of cases. CBR systems cannot be preserved without scanning the case base. For this reason, the latter must undergo maintenance operations.The techniques of case base’s dimension optimization is the analog of instance reduction size methodology (in the machine learning community). This study links these techniques by presenting case-based maintenance in the framework of instance based reduction, and provides: first an overview of CBM studies, second, a novel method of structuring and updating the case base and finally an application of industrial case is presented.The structuring combines a categorization algorithm with a measure of competence CM based on competence and performance criteria. Since the case base must progress over time through the addition of new cases, an auto-increment algorithm is installed in order to dynamically ensure the structuring and the quality of a case base. The proposed method was evaluated through a case base from an industrial plant. In addition, an experimental study of the competence and the performance was undertaken on reference benchmarks. This study showed that the proposed method gives better results than the best methods currently found in the literature

    Multi-task Deep Reinforcement Learning with PopArt

    Full text link
    The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent instance. This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on. In this work, we study the problem of learning to master not one but multiple sequential-decision tasks at once. A general issue in multi-task learning is that a balance must be found between the needs of multiple tasks competing for the limited resources of a single learning system. Many learning algorithms can get distracted by certain tasks in the set of tasks to solve. Such tasks appear more salient to the learning process, for instance because of the density or magnitude of the in-task rewards. This causes the algorithm to focus on those salient tasks at the expense of generality. We propose to automatically adapt the contribution of each task to the agent's updates, so that all tasks have a similar impact on the learning dynamics. This resulted in state of the art performance on learning to play all games in a set of 57 diverse Atari games. Excitingly, our method learned a single trained policy - with a single set of weights - that exceeds median human performance. To our knowledge, this was the first time a single agent surpassed human-level performance on this multi-task domain. The same approach also demonstrated state of the art performance on a set of 30 tasks in the 3D reinforcement learning platform DeepMind Lab

    Improving Scalability of Evolutionary Robotics with Reformulation

    Get PDF
    Creating systems that can operate autonomously in complex environments is a challenge for contemporary engineering techniques. Automatic design methods offer a promising alternative, but so far they have not been able to produce agents that outperform manual designs. One such method is evolutionary robotics. It has been shown to be a robust and versatile tool for designing robots to perform simple tasks, but more challenging tasks at present remain out of reach of the method. In this thesis I discuss and attack some problems underlying the scalability issues associated with the method. I present a new technique for evolving modular networks. I show that the performance of modularity-biased evolution depends heavily on the morphology of the robot’s body and present a new method for co-evolving morphology and modular control. To be able to reason about the new technique I develop reformulation framework: a general way to describe and reason about metaoptimization approaches. Within this framework I describe a new heuristic for developing metaoptimization approaches that is based on the technique for co-evolving morphology and modularity. I validate the framework by applying it to a practical task of zero-g autonomous assembly of structures with a fleet of small robots. Although this work focuses on the evolutionary robotics, methods and approaches developed within it can be applied to optimization problems in any domain

    Generalization Through the Lens of Learning Dynamics

    Full text link
    A machine learning (ML) system must learn not only to match the output of a target function on a training set, but also to generalize to novel situations in order to yield accurate predictions at deployment. In most practical applications, the user cannot exhaustively enumerate every possible input to the model; strong generalization performance is therefore crucial to the development of ML systems which are performant and reliable enough to be deployed in the real world. While generalization is well-understood theoretically in a number of hypothesis classes, the impressive generalization performance of deep neural networks has stymied theoreticians. In deep reinforcement learning (RL), our understanding of generalization is further complicated by the conflict between generalization and stability in widely-used RL algorithms. This thesis will provide insight into generalization by studying the learning dynamics of deep neural networks in both supervised and reinforcement learning tasks.Comment: PhD Thesi
    • …
    corecore