68 research outputs found

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    An overview of artificial intelligence applications for power electronics

    Get PDF

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201

    State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems

    Get PDF
    The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the variability of the wind resource to achieve better operative performance of power systems. This paper presents an exhaustive review of the state-of-the-art of wind-speed and -power forecasting models for wind turbines located in different segments of power systems, i.e., in large wind farms, distributed generation, microgrids, and micro-wind turbines installed in residences and buildings. This review covers forecasting models based on statistical and physical, artificial intelligence, and hybrid methods, with deterministic or probabilistic approaches. The literature review is carried out through a bibliometric analysis using VOSviewer and Pajek software. A discussion of the results is carried out, taking as the main approach the forecast time horizon of the models to identify their applications. The trends indicate a predominance of hybrid forecast models for the analysis of power systems, especially for those with high penetration of wind power. Finally, it is determined that most of the papers analyzed belong to the very short-term horizon, which indicates that the interest of researchers is in this time horizon

    Koneoppimiskehys petrokemianteollisuuden sovelluksille

    Get PDF
    Machine learning has many potentially useful applications in process industry, for example in process monitoring and control. Continuously accumulating process data and the recent development in software and hardware that enable more advanced machine learning, are fulfilling the prerequisites of developing and deploying process automation integrated machine learning applications which improve existing functionalities or even implement artificial intelligence. In this master's thesis, a framework is designed and implemented on a proof-of-concept level, to enable easy acquisition of process data to be used with modern machine learning libraries, and to also enable scalable online deployment of the trained models. The literature part of the thesis concentrates on studying the current state and approaches for digital advisory systems for process operators, as a potential application to be developed on the machine learning framework. The literature study shows that the approaches for process operators' decision support tools have shifted from rule-based and knowledge-based methods to machine learning. However, no standard methods can be concluded, and most of the use cases are quite application-specific. In the developed machine learning framework, both commercial software and open source components with permissive licenses are used. Data is acquired over OPC UA and then processed in Python, which is currently almost the de facto standard language in data analytics. Microservice architecture with containerization is used in the online deployment, and in a qualitative evaluation, it proved to be a versatile and functional solution.Koneoppimisella voidaan osoittaa olevan useita hyödyllisiä käyttökohteita prosessiteollisuudessa, esimerkiksi prosessinohjaukseen liittyvissä sovelluksissa. Jatkuvasti kerääntyvä prosessidata ja toisaalta koneoppimiseen soveltuvien ohjelmistojen sekä myös laitteistojen viimeaikainen kehitys johtavat tilanteeseen, jossa prosessiautomaatioon liitettyjen koneoppimissovellusten avulla on mahdollista parantaa nykyisiä toiminnallisuuksia tai jopa toteuttaa tekoälysovelluksia. Tässä diplomityössä suunniteltiin ja toteutettiin prototyypin tasolla koneoppimiskehys, jonka avulla on helppo käyttää prosessidataa yhdessä nykyaikaisten koneoppimiskirjastojen kanssa. Kehys mahdollistaa myös koneopittujen mallien skaalautuvan käyttöönoton. Diplomityön kirjallisuusosa keskittyy prosessioperaattoreille tarkoitettujen digitaalisten avustajajärjestelmien nykytilaan ja toteutustapoihin, avustajajärjestelmän tai sen päätöstukijärjestelmän ollessa yksi mahdollinen koneoppimiskehyksen päälle rakennettava ohjelma. Kirjallisuustutkimuksen mukaan prosessioperaattorin päätöstukijärjestelmien taustalla olevat menetelmät ovat yhä useammin koneoppimiseen perustuvia, aiempien sääntö- ja tietämyskantoihin perustuvien menetelmien sijasta. Selkeitä yhdenmukaisia lähestymistapoja ei kuitenkaan ole helposti pääteltävissä kirjallisuuden perusteella. Lisäksi useimmat tapausesimerkit ovat sovellettavissa vain kyseisissä erikoistapauksissa. Kehitetyssä koneoppimiskehyksessä on käytetty sekä kaupallisia että avoimen lähdekoodin komponentteja. Prosessidata haetaan OPC UA -protokollan avulla, ja sitä on mahdollista käsitellä Python-kielellä, josta on muodostunut lähes de facto -standardi data-analytiikassa. Kehyksen käyttöönottokomponentit perustuvat mikropalveluarkkitehtuuriin ja konttiteknologiaan, jotka osoittautuivat laadullisessa testauksessa monipuoliseksi ja toimivaksi toteutustavaksi
    corecore