75,200 research outputs found

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Mitigation of Through-Wall Distortions of Frontal Radar Images using Denoising Autoencoders

    Full text link
    Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction and multipath clutter in indoor through-wall environments. While several methods have been proposed for removing target independent static and dynamic clutter, there still remain considerable challenges in mitigating target dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this work we focus on mitigating wall effects using a machine learning based solution -- denoising autoencoders -- that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with two-dimensional array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with two-dimensional array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images

    Identifying leading indicators of product recalls from online reviews using positive unlabeled learning and domain adaptation

    Full text link
    Consumer protection agencies are charged with safeguarding the public from hazardous products, but the thousands of products under their jurisdiction make it challenging to identify and respond to consumer complaints quickly. From the consumer's perspective, online reviews can provide evidence of product defects, but manually sifting through hundreds of reviews is not always feasible. In this paper, we propose a system to mine Amazon.com reviews to identify products that may pose safety or health hazards. Since labeled data for this task are scarce, our approach combines positive unlabeled learning with domain adaptation to train a classifier from consumer complaints submitted to the U.S. Consumer Product Safety Commission. On a validation set of manually annotated Amazon product reviews, we find that our approach results in an absolute F1 score improvement of 8% over the best competing baseline. Furthermore, we apply the classifier to Amazon reviews of known recalled products; the classifier identifies reviews reporting safety hazards prior to the recall date for 45% of the products. This suggests that the system may be able to provide an early warning system to alert consumers to hazardous products before an official recall is announced

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better
    corecore