3,416 research outputs found

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure

    Robust Scheduling with GFlowNets

    Full text link
    Finding the best way to schedule operations in a computation graph is a classical NP-hard problem which is central to compiler optimization. However, evaluating the goodness of a schedule on the target hardware can be very time-consuming. Traditional approaches as well as previous machine learning ones typically optimize proxy metrics, which are fast to evaluate but can lead to bad schedules when tested on the target hardware. In this work, we propose a new approach to scheduling by sampling proportionally to the proxy metric using a novel GFlowNet method. We introduce a technique to control the trade-off between diversity and goodness of the proposed schedules at inference time and demonstrate empirically that the pure optimization baselines can lead to subpar performance with respect to our approach when tested on a target model. Furthermore, we show that conditioning the GFlowNet on the computation graph enables generalization to unseen scheduling problems for both synthetic and real-world compiler datasets.Comment: Published at International Conference on Learning Representations (ICLR) 2023; an earlier version appeared at the NeurIPS 2022 workshop ML4System

    Ant colony optimization for multi-UAV minimum time search in uncertain domains

    Get PDF
    This paper presents a new approach based on ant colony optimization (ACO) to determine the trajectories of a fleet of unmanned air vehicles (UAVs) looking for a lost target in the minimum possible time. ACO is especially suitable for the complexity and probabilistic nature of the minimum time search (MTS) problem, where a balance between the computational requirements and the quality of solutions is needed. The presented approach includes a new MTS heuristic that exploits the probability and spatial properties of the problem, allowing our ant based algorithm to quickly obtain high-quality high-level straight-segmented UAV trajectories. The potential of the algorithm is tested for different ACO parameterizations, over several search scenarios with different characteristics such as number of UAVs, or target dynamics and location distributions. The statistical comparison against other techniques previously used for MTS (ad hoc heuristics, cross entropy optimization, bayesian optimization algorithm and genetic algorithms) shows that the new approach outperforms the others.This work was supported by Airbus under the SAVIER AER-30459 project

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms
    corecore