2,060 research outputs found

    Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism

    Get PDF
    The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (\u3c 2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (\u3e 3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA

    Roadmap for optofluidics

    Get PDF
    Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic. applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a. combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics,. is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not. easy. In this article, we report several expert contributions on different topics. so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders. to better understand the perspectives and opportunities offered by this research field

    Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases

    Get PDF
    The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 18)

    Get PDF
    Abstracts are cited for 120 patents and patent applications for patents introduced into the NASA scientific system during the period of July 1980 through December 1980. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent

    Micro- and Nanofluidics for Bionanoparticle Analysis

    Get PDF
    Bionanoparticles such as microorganisms and exosomes are recoganized as important targets for clinical applications, food safety, and environmental monitoring. Other nanoscale biological particles, includeing liposomes, micelles, and functionalized polymeric particles are widely used in nanomedicines. The recent deveopment of microfluidic and nanofluidic technologies has enabled the separation and anslysis of these species in a lab-on-a-chip platform, while there are still many challenges to address before these analytical tools can be adopted in practice. For example, the complex matrices within which these species reside in create a high background for their detection. Their small dimension and often low concentration demand creative strategies to amplify the sensing signal and enhance the detection speed. This Special Issue aims to recruit recent discoveries and developments of micro- and nanofluidic strategies for the processing and analysis of biological nanoparticles. The collection of papers will hopefully bring out more innovative ideas and fundamental insights to overcome the hurdles faced in the separation and detection of bionanoparticles

    Transport by kinesin motors diffusing on a lipid bilayer

    Get PDF
    Intracellular transport of membrane-bound vesicles and organelles is a process fundamental for many cellular functions including cell morphogenesis and signaling. The transport is mediated by ensembles of motor proteins, such as kinesins, walking on microtubule tracks. When transporting membrane-bound cargo inside a cell, the motors are linked to diffusive lipid bilayers either directly or via adaptor molecules. The fluidity of the lipid bilayers induces loose inter-motor coupling which is likely to impact the collective motor dynamics and may induce cooperativity. Here, we investigate the influence of loose coupling of kinesin motors on its transport characteristics. In the first part of this thesis, we used truncated kinesin-1 motors with a streptavidin-binding-peptide (SBP) tag and performed gliding motility assays on streptavidin-loaded biotinylated supported lipid bilayers (SLBs), so called ‘membrane-anchored’ gliding motility assays. We show that the membrane-anchored motors act cooperatively; the microtubule gliding velocity increases with increasing motor density. This is in contrast to the transport behavior of multiple motors rigidly bound to a substrate. There, the motility is either insensitive to the motor density or shows negative interference at higher motor density, depending on the structure of the motors. The cooperativity in transport driven by membrane-anchored motors can be explained as following: while stepping on a microtubule, membrane-anchored motors slip backwards in the viscous membrane, thus propelling the microtubule in the solution at a velocity, given by the difference of the motor stepping velocity and the slipping velocity. The motor stepping on the microtubule occurs at maximal stepping velocity because the load on the membrane-anchored motors is minute. Thus, the slipping velocity of membrane-anchored motors determines the microtubule gliding velocity. At steady state, the drag force on the microtubule in the solution is equal to the collective drag force on the membrane-anchored motors slipping in the viscous membrane. As a consequence, at low motor density, membrane-anchored motors slip back faster to balance the drag force of the microtubule in the solution. This results in a microtubule gliding velocity significantly lower than the maximal stepping velocity of the individual motors. In contrast, at high motor density, the microtubules are propelled faster with velocities equal to the maximal stepping velocity of individual motors. Because, in this case, the collective drag force on the motors even at very low slipping velocity, is large enough to balance the microtubule drag in the solution. The theoretical model developed based on this explanation is in good agreement with the experimental data of gliding velocities at different motor densities. The model gives information about the distance that the diffusing motors can isotropically reach to bind to a microtubule, which for membrane-anchored kinesin-1 is ~0.3 µm, an order of magnitude higher as compared to rigidly bound motors, owing to the lateral mobility of motors on the membrane. In addition, the model can be used to predict the number of motors involved in transport of a microtubule based on its gliding velocity. In the second part of the thesis, we investigated the effect of loose inter-motor coupling on the transport behavior of KIF16B, a recently discovered kinesin motor with an inherent lipid-binding domain. Recent studies based on cell biological and cell extract experiments, have postulated that cargo binding of KIF16B is required to activate and dimerize the motor, making it a superprocessive motor. Here, we demonstrate that recombinant full-length KIF16B is a dimer even in the absence of cargo or additional proteins. The KIF16B dimers are active and processive, which demonstrates that the motors are not auto-inhibited in our experiments. Thus, in cells and cell extracts Kif16B may be inhibited by additional factors, which are removed upon cargo binding. Single molecule analysis of KIF16B-GFP reveals that the motors are not superprocessive but exhibit a processivity similar to kinesin-1 indicating that additional factors are most likely necessary to achieve superprocessivity. Transport on membrane-anchored KIF16B motors exhibited a similar cooperative behavior as membrane-anchored kinesin-1 where the microtubule gliding velocity increased with increasing motor density. Taken together, our results demonstrate that the loose coupling of motors via lipid bilayers provides flexibility to cytoskeletal transport systems and induces cooperativity in multi-motor transport. Moreover, our ‘membrane-anchored’ gliding motility assays can be used to study the effects of lipid diffusivity (e.g. the presence of lipid micro-domains and rafts), lipid composition, and adaptor proteins on the collective dynamics of different motors.:Abstract vii 1 Introduction 1 1.1 Intracellular transport driven by motor proteins 2 1.2 Attachment of motor proteins to cargo 13 1.3 In vitro approaches to study transport by motor proteins 16 1.4 Aim of this study 23 2 Transport by kinesin-1 anchored to supported lipid bilayers 24 2.1 Formation and characterization of biotinylated SLBs 26 2.2 Anchoring kinesin-1 to biotinylated SLBs 28 2.3 Gliding motility of microtubules by kinesin-1 linked to SLBs 34 2.4 Theoretical description of gliding motility on diffusing motor proteins 40 2.5 Comparison of the gliding velocity between experiment and theory 46 2.6 Gliding motility on phase-separated SLBs 53 2.7 Discussion 55 3 Transport by KIF16B with an inherent lipid-binding domain 62 3.2 Biophysical characterization of KIF16B 70 3.3 Gliding motility of microtubules by KIF16B linked to SLBs 78 3.4 Transport of SUVs and lipid-coated beads attached to KIF16B 87 3.5 Discussion 90 4 Conclusion and outlook 96 5 Materials and methods 99 5.1 Reagents and solutions 99 5.2 Molecular biology 100 5.3 Protein expression and purification 104 5.4 In vitro motility assays 110 5.5 Image acquisition and data analysis 118 References 126 List of figures 141 List of tables 143 Abbreviations and symbols 144 Acknowledgements 14
    • …
    corecore