119 research outputs found

    Regularized Nonparametric Volterra Kernel Estimation

    Full text link
    In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modelled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points

    Laplace deconvolution with noisy observations

    Get PDF
    In the present paper we consider Laplace deconvolution for discrete noisy data observed on the interval whose length may increase with a sample size. Although this problem arises in a variety of applications, to the best of our knowledge, it has been given very little attention by the statistical community. Our objective is to fill this gap and provide statistical treatment of Laplace deconvolution problem with noisy discrete data. The main contribution of the paper is explicit construction of an asymptotically rate-optimal (in the minimax sense) Laplace deconvolution estimator which is adaptive to the regularity of the unknown function. We show that the original Laplace deconvolution problem can be reduced to nonparametric estimation of a regression function and its derivatives on the interval of growing length T_n. Whereas the forms of the estimators remain standard, the choices of the parameters and the minimax convergence rates, which are expressed in terms of T_n^2/n in this case, are affected by the asymptotic growth of the length of the interval. We derive an adaptive kernel estimator of the function of interest, and establish its asymptotic minimaxity over a range of Sobolev classes. We illustrate the theory by examples of construction of explicit expressions of Laplace deconvolution estimators. A simulation study shows that, in addition to providing asymptotic optimality as the number of observations turns to infinity, the proposed estimator demonstrates good performance in finite sample examples

    Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging

    Full text link
    In the present paper we consider the problem of Laplace deconvolution with noisy discrete observations. The study is motivated by Dynamic Contrast Enhanced imaging using a bolus of contrast agent, a procedure which allows considerable improvement in {evaluating} the quality of a vascular network and its permeability and is widely used in medical assessment of brain flows or cancerous tumors. Although the study is motivated by medical imaging application, we obtain a solution of a general problem of Laplace deconvolution based on noisy data which appears in many different contexts. We propose a new method for Laplace deconvolution which is based on expansions of the convolution kernel, the unknown function and the observed signal over Laguerre functions basis. The expansion results in a small system of linear equations with the matrix of the system being triangular and Toeplitz. The number mm of the terms in the expansion of the estimator is controlled via complexity penalty. The advantage of this methodology is that it leads to very fast computations, does not require exact knowledge of the kernel and produces no boundary effects due to extension at zero and cut-off at TT. The technique leads to an estimator with the risk within a logarithmic factor of mm of the oracle risk under no assumptions on the model and within a constant factor of the oracle risk under mild assumptions. The methodology is illustrated by a finite sample simulation study which includes an example of the kernel obtained in the real life DCE experiments. Simulations confirm that the proposed technique is fast, efficient, accurate, usable from a practical point of view and competitive

    Stage-discharge relationship in tidal channels

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 15 (2017): 394–407, doi:10.1002/lom3.10168.Long-term records of the flow of water through tidal channels are essential to constrain the budgets of sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water level allow the estimation of such records from more easily obtained records of water stage in the channel. Here we compare four different types of stage-discharge models, each of which captures different characteristics of the stage-discharge relationship. We estimate and validate each of these models on a two-month long time series of stage and discharge obtained with an Acoustic Doppler Current Profiler in a salt marsh channel. We find that the best performance is obtained by models that account for the nonlinear and time-varying nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version of these models, which captures nonlinearity and nonstationarity without the complexity of the fully nonlinear or time-varying models.This research was supported by the National Science Foundation (awards OCE1354251, OCE1354494, and OCE1238212).2018-04-2

    An Offline Learning Approach to Propagator Models

    Full text link
    We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset, and then designs strategies to liquidate a risky asset while creating transient price impact. We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders. We quantify the accuracy of the estimated propagator using a metric which depends explicitly on the dataset. We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality due to so-called spurious correlation between the trading strategy and the estimator and due to intrinsic uncertainty resulting from a biased cost functional. By adopting an offline reinforcement learning approach, we introduce a pessimistic loss functional taking the uncertainty of the estimated propagator into account, with an optimiser which eliminates the spurious correlation, and derive an asymptotically optimal bound on the execution costs even without precise information on the true propagator. Numerical experiments are included to demonstrate the effectiveness of the proposed propagator estimator and the pessimistic trading strategy.Comment: 12 figure
    corecore