144 research outputs found

    A high-performance boundary element method and its applications in engineering

    Get PDF
    As a semi-numerical and semi-analytical method, owing to the inherent advantage, of boundary-only discretisation, the boundary element method (BEM) has been widely applied to problems with complicated geometries, stress concentration problems, infinite domain problems, and many others. However, domain integrals and non-symmetrical and dense matrix systems are two obstacles for BEM which have hindered the its further development and application. This thesis is aimed at proposing a high-performance BEM to tackle the above two drawbacks and broaden the application scope of BEM. In this thesis, a detailed introduction to the traditional BEM is given and several popular algorithms are introduced or proposed to enhance the performance of BEM. Numerical examples in heat conduction analysis, thermoelastic analysis and thermoelastic fracture problems are performed to assess the efficiency and correction of the algorithms. In addition, necessary theoretical derivations are embraced for establishing novel boundary integral equations (BIEs) for specific engineering problems. The following three parts are the main content of this thesis. (1) The first part (Part II consisting of two chapters) is aimed at heat conduction analysis by BEM. The coefficient matrix of equations formed by BEM in solving problems is fully-populated which occupy large computer memory. To deal with that, the fast multipole method (FMM) is introduced to energize the line integration boundary element method (LIBEM) to performs better in efficiency. In addition, to compute domain integrals with known or unknown integrand functions which are caused by heat sources or heterogeneity, a novel BEM, the adaptive orthogonal interpolation moving least squares (AOIMLS) method enhanced LIBEM, which also inherits the advantage of boundary-only discretisation, is proposed. Unlike LIBEM, which is an accurate and stable method for computing domain integrals, but only works when the mathematical expression of integral function in domain integrals is known, the AOIMLS enhanced LIBEM can compute domain integrals with known or unknown integral functions, which ensures all the nonlinear and nonhomogeneous problems can be solved without domain discretisation. In addition, the AOIMLS can adaptively avoid singular or ill-conditioned moment matrices, thus ensuring the stability of the calculation results. (2) In the second part (Part III consisting of four chapters), the thermoelastic problems and fracture problems are the main objectives. Due to considering thermal loads, domain integrals appear in the BIEs of the thermoelastic problems, and the expression of integrand functions is known or not depending on the temperature distribution given or not, the AOIMLS enhanced LIBEM is introduced to conduct thermoelasticity analysis thereby. Besides, a series of novel unified boundary integral equations based on BEM and DDM are derived for solving fracture problems and thermoelastic fracture problems in finite and infinite domains. Two sets of unified BIEs are derived for fracture problems in finite and infinite domains based on the direct BEM and DDM respectively, which can provide accurate and stable results. Another two sets of BIEs are addressed by employing indirect BEM and DDM, which cannot ensure a stable result, thereby a modified indirect BEM is proposed which performs much more stable. Moreover, a set of novel BIEs based on the direct BEM and DDM for cracked domains under thermal stress is proposed. (3) In the third part (Part IV consisting of one chapter), a high-efficiency combined BEM and discrete element method (DEM) is proposed to compute the inner stress distribution and particle breakage of particle assemblies based on the solution mapping scheme. For the stress field computation of particles with similar geometry, a template particle is used as the representative particle, so that only the related coefficient matrices of one template particle in the local coordinate system are needed to be calculated, while the coefficient matrices of the other particles, can be obtained by mapping between the local and global coordinate systems. Thus, the combined BEM and DEM is much more effective when modelling a large-scale particle system with a small number of distinct possible particle shapes. Furthermore, with the help of the Hoek-Brown criterion, the possible cracks or breakage paths of a particle can be obtained

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields

    Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

    Full text link
    In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L\'{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.Comment: 25 pages, 25 figures, 7 table

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    Eine gitterfreie Raum-Zeit-Kollokationsmethode fĂŒr gekoppelte Probleme auf Gebieten mit komplizierten RĂ€ndern

    Get PDF
    In der vorliegenden Arbeit wird eine neuartige gitterfreie Raum-Zeit-Kollokationsmethode (engl. STMCM) zur Lösung von Systemen partieller und gewöhnlicher Differentialgleichungen durch eine konsistente Diskretisierung in Raum und Zeit als Alternative zu den etablierten netzbasierten Verfahren vorgeschlagen. Die STMCM gehört zur Klasse der tatsĂ€chlich gitterfreien Methoden, die nur mit Punktwolken ohne a priori NetzkonnektivitĂ€t arbeiten und kein Diskretisierungsnetz benötigen. Das Verfahren basiert auf der Interpolating Moving Least Squares Methode, die eine vereinfachte ErfĂŒllung der Randbedingungen durch die von den Kernfunktionen erfĂŒllte Kronecker-Delta-Eigenschaft ermöglicht, was beim grĂ¶ĂŸten Teil anderer netzfreier Verfahren nicht der Fall ist. Ein Regularisierungsverfahren zur BewĂ€ltigung des beim Aufbau der Kernfunktionen auftretenden SingularitĂ€tsproblems, sowie zur Berechnung aller benötigten Ableitungen der Kernfunktionen wird dargelegt. Ziel ist es dabei, eine Methode zu entwickeln, die die Einfachheit der Verfahren zur Lösung partieller Differentialgleichungen in starker Form mit den Vorteilen der gitterfreien Verfahren, insbesondere mit Blick auf gekoppelte Probleme des Ingenieurwesens mit sich bewegenden GrenzïŹ‚Ă€chen, verknĂŒpft. Die vorgeschlagene Methode wird zunĂ€chst zur Lösung linearer und nichtlinearer partieller sowie gewöhnlicher Differentialgleichungen angewendet. Dabei werden deren Konvergenz- und Genauigkeitseigenschaften untersucht. Die implizite Rekonstruktion der Gebiete mit komplizierten RĂ€ndern als Abbildungsstrategie zur Punktwolken-Streuung wird durch die Interpolation von Punktwolkendaten in zwei und drei Raumdimensionen demonstriert. Anhand der Modelle zur Simulation von BioïŹlm- und Tumor-Wachstumsprozessen werden Anwendungsbeispiele aus dem Bereich der Umweltwissenschaften und der Medizintechnik dargestellt.In this thesis an innovative Space-Time Meshfree Collocation Method (STMCM) for solving systems of nonlinear ordinary and partial differential equations by a consistent discretization in both space and time is proposed as an alternative to established mesh-based methods. The STMCM belongs to the class of truly meshfree methods, i.e. the methods which do not have any underlying mesh, but work on a set of nodes only without an a priori node-to-node connectivity. The STMCM is constructed using the Interpolating Moving Least Squares technique, allowing a simplified implementation of boundary conditions due to fulfilment of the Kronecker delta property by the kernel functions, which is not the case for the major part of other meshfree methods. A regularization technique to overcome the singularity-by-construction problem and compute all necessary derivatives of the kernel functions is presented. The goal is to design a method that combines the simplicity and straightforwardness of the strong-form computational techniques with the advantages of meshfree methods over the classical ones, especially for coupled engineering problems involving moving interfaces. The proposed STMCM is applied to linear and nonlinear partial and ordinary differential equations of different types and its accuracy and convergence properties are studied. The power of the technique is demonstrated by implicit reconstruction of domains with complex boundaries via interpolation of point cloud data in two and three space dimensions as a `mapping' strategy for distribution of computational points within such domains. Applications from the fields of environmental and medical engineering are presented by means of a mathematical model for simulating a biofilm growth and a nonlinear model of tumour growth processes

    Renormalizability of Effective Scalar Field Theory

    Full text link
    We present a comprehensive discussion of the consistency of the effective quantum field theory of a single Z2Z_2 symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory are actually equivalent. All this is achieved by a systematic exploitation of Wilson's exact renormalization group flow equation, as used by Polchinski in his original proof of the renormalizability of conventional φ4\varphi^4-theory.Comment: 80 pages, TeX, OUTP-93-23P, CERN-TH.7067/93. Many minor revisions, and several new paragraph

    Stabilization Algorithms for Large-Scale Problems

    No full text

    Geometrical resolution of spacetime singularities

    Get PDF
    General relativity predicts the existence of gravitational singularities at the classical level: our universe started with the big bang, and massive stars can collapse into black holes. A theory that describes quantum gravitational effects should elucidate our understanding of these singularities. The existence of these singularities also raises the question whether propagation of quantum fields through a singularity is possible (and how it should be formulated). String theory can already deal with some timelike singularities but not yet with spacelike singularities like the big bang. Near singularities, strings often interact strongly. A formulation of string theory that allows to take strong interactions between strings into account is given by matrix theory. Matrix theory models that describe singularities often have a dual translation in terms of a quantum field theory that is defined on a singular background spacetime. In this dissertation we investigate these issues. We use a geometric regularization prescription to define the evolution of a free scalar field and of a free string through a singularity in an unambiguous manner. Remarkably, this geometric regularization seems to reveal there is a certain feature of discreteness related to the evolution across the singularity. We also consider an important class of time-dependent backgrounds that can be investigated in string theory. This class is called gravitational plane waves. These plane waves can be used to investigate the strong curvature effects related to a singularity. Our study shows that it is necessary to take into account that the strings can interact strongly near the singularity. In order to obtain a better understanding of matrix theory on a plane wave background we investigate solutions that describes D-branes in plane wave backgrounds. D-branes are objects that appear in string theory besides strings, and that are important for the formulation of matrix theory

    Stochastic control liaisons: Richard Sinkhorn meets gaspard monge on a schr\uf6dinger bridge

    Get PDF
    In 1931-1932, Erwin Schr\uf6dinger studied a hot gas Gedankenexperiment (an instance of large deviations of the empirical distribution). Schr\uf6dinger's problem represents an early example of a fundamental inference method, the so-called maximum entropy method, having roots in Boltzmann's work and being developed in subsequent years by Jaynes, Burg, Dempster, and Csisz\ue1r. The problem, known as the Schr\uf6dinger bridge problem (SBP) with "uniform"prior, was more recently recognized as a regularization of the Monge-Kantorovich optimal mass transport (OMT) problem, leading to effective computational schemes for the latter. Specifically, OMT with quadratic cost may be viewed as a zerotemperature limit of the problem posed by Schr\uf6dinger in the early 1930s. The latter amounts to minimization of Helmholtz's free energy over probability distributions that are constrained to possess two given marginals. The problem features a delicate compromise, mediated by a temperature parameter, between minimizing the internal energy and maximizing the entropy. These concepts are central to a rapidly expanding area of modern science dealing with the so-called Sinkhorn algorithm, which appears as a special case of an algorithm first studied in the more challenging continuous space setting by the French analyst Robert Fortet in 1938-1940 specifically for Schr\uf6dinger bridges. Due to the constraint on end-point distributions, dynamic programming is not a suitable tool to attack these problems. Instead, Fortet's iterative algorithm and its discrete counterpart, the Sinkhorn iteration, permit computation of the optimal solution by iteratively solving the so-called Schr\uf6dinger system. Convergence of the iteration is guaranteed by contraction along the steps in suitable metrics, such as Hilbert's projective metric. In both the continuous as well as the discrete time and space settings, stochastic control provides a reformulation of and a context for the dynamic versions of general Schr\uf6dinger bridge problems and of their zero-temperature limit, the OMT problem. These problems, in turn, naturally lead to steering problems for flows of one-time marginals which represent a new paradigm for controlling uncertainty. The zero-temperature problem in the continuous-time and space setting turns out to be the celebrated Benamou-Brenier characterization of the McCann displacement interpolation flow in OMT. The formalism and techniques behind these control problems on flows of probability distributions have attracted significant attention in recent years as they lead to a variety of new applications in spacecraft guidance, control of robot or biological swarms, sensing, active cooling, and network routing as well as in computer and data science. This multifaceted and versatile framework, intertwining SBP and OMT, provides the substrate for the historical and technical overview of the field given in this paper. A key motivation has been to highlight links between the classical early work in both topics and the more recent stochastic control viewpoint, which naturally lends itself to efficient computational schemes and interesting generalizations

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p
    • 

    corecore