6,954 research outputs found

    Sparse Matrix Inversion with Scaled Lasso

    Full text link
    We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance or correlation matrix. The algorithm first estimates each column of the target matrix by the scaled Lasso and then adjusts the matrix estimator to be symmetric. The penalty level of the scaled Lasso for each column is completely determined by data via convex minimization, without using cross-validation. We prove that this scaled Lasso method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other â„“1\ell_1 regularized algorithms, and has faster guaranteed rate of convergence when the ratio of the â„“1\ell_1 and spectrum norms of the target inverse matrix diverges to infinity. A simulation study demonstrates the computational feasibility and superb performance of the proposed method. Our analysis also provides new performance bounds for the Lasso and scaled Lasso to guarantee higher concentration of the error at a smaller threshold level than previous analyses, and to allow the use of the union bound in column-by-column applications of the scaled Lasso without an adjustment of the penalty level. In addition, the least squares estimation after the scaled Lasso selection is considered and proven to guarantee performance bounds similar to that of the scaled Lasso

    Group Symmetry and non-Gaussian Covariance Estimation

    Full text link
    We consider robust covariance estimation with group symmetry constraints. Non-Gaussian covariance estimation, e.g., Tyler scatter estimator and Multivariate Generalized Gaussian distribution methods, usually involve non-convex minimization problems. Recently, it was shown that the underlying principle behind their success is an extended form of convexity over the geodesics in the manifold of positive definite matrices. A modern approach to improve estimation accuracy is to exploit prior knowledge via additional constraints, e.g., restricting the attention to specific classes of covariances which adhere to prior symmetry structures. In this paper, we prove that such group symmetry constraints are also geodesically convex and can therefore be incorporated into various non-Gaussian covariance estimators. Practical examples of such sets include: circulant, persymmetric and complex/quaternion proper structures. We provide a simple numerical technique for finding maximum likelihood estimates under such constraints, and demonstrate their performance advantage using synthetic experiments

    Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 2: The Under-Sampled Case

    Get PDF
    In the first part of this series of two papers, we extended the expected likelihood approach originally developed in the Gaussian case, to the broader class of complex elliptically symmetric (CES) distributions and complex angular central Gaussian (ACG) distributions. More precisely, we demonstrated that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual scatter matrix \mSigma_{0} does not depend on the latter: it only depends on the density generator for the CES distribution and is distribution-free in the case of ACG distributed data, i.e., it only depends on the matrix dimension MM and the number of independent training samples TT, assuming that T≥MT \geq M. Additionally, regularized scatter matrix estimates based on the EL methodology were derived. In this second part, we consider the under-sampled scenario (T≤MT \leq M) which deserves a specific treatment since conventional maximum likelihood estimates do not exist. Indeed, inference about the scatter matrix can only be made in the TT-dimensional subspace spanned by the columns of the data matrix. We extend the results derived under the Gaussian assumption to the CES and ACG class of distributions. Invariance properties of the under-sampled likelihood ratio evaluated at \mSigma_{0} are presented. Remarkably enough, in the ACG case, the p.d.f. of this LR can be written in a rather simple form as a product of beta distributed random variables. The regularized schemes derived in the first part, based on the EL principle, are extended to the under-sampled scenario and assessed through numerical simulations
    • …
    corecore