624 research outputs found

    MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

    Get PDF
    As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset

    Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression

    Get PDF
    The large number of multicollinear regional features that are provided by resting state (rs) fMRI data requires robust feature selection to uncover consistent networks of functional disconnection in Alzheimer's disease (AD). Here, we compared elastic net regularized and classical stepwise logistic regression in respect to consistency of feature selection and diagnostic accuracy using rs-fMRI data from four centers of the German resting-state initiative for diagnostic biomarkers (psymri.org), comprising 53 AD patients and 118 age and sex matched healthy controls. Using all possible pairs of correlations between the time series of rs-fMRI signal from 84 functionally defined brain regions as the initial set of predictor variables, we calculated accuracy of group discrimination and consistency of feature selection with bootstrap cross-validation. Mean areas under the receiver operating characteristic curves as measure of diagnostic accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net regression was insensitive to scanner effects and recovered a consistent network of functional connectivity decline in AD that encompassed parts of the dorsal default mode as well as brain regions involved in attention, executive control, and language processing. Stepwise logistic regression found no consistent network of AD related functional connectivity decline. Regularized regression has high potential to increase diagnostic accuracy and consistency of feature selection from multicollinear functional neuroimaging data in AD. Our findings suggest an extended network of functional alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did not reach the benchmark defined for a useful biomarker of AD

    Progression Modeling of Cognitive Disease Using Temporal Data Mining: Research Landscape, Gaps and Solution Design

    Get PDF
    Dementia is a cognitive disorder whose diagnosis and progression monitoring is very difficult due to a very slow onset and progression. It is difficult to detect whether cognitive decline is due to ageing process or due to some form of dementia as MRI scans of the brain cannot reliably differentiate between ageing related volume loss and pathological changes. Laboratory tests on blood or CSF samples have also not proved very useful. Alzheimer�s disease (AD) is recognized as the most common cause of dementia. Development of sensitive and reliable tool for evaluation in terms of early diagnosis and progression monitoring of AD is required. Since there is an absence of specific markers for predicting AD progression, there is a need to learn more about specific attributes and their temporal relationships that lead to this disease and determine progression from mild cognitive impairment to full blown AD. Various stages of disease and transitions from one stage to the have be modelled based on longitudinal patient data. This paper provides a critical review of the methods to understand disease progression modelling and determine factors leading to progression of AD from initial to final stages. Then the design of a machine learning based solution is proposed to handle the gaps in current research

    Supervised Sparse Components Analysis with Application to Brain Imaging Data

    Get PDF
    We propose a dimension-reduction method using supervised (multi-block) sparse (principal) component analysis. The method is first implemented through basis expansion of spatial brain images, and the scores are then reduced through regularized matrix decomposition to produce simultaneous data-driven selections of related brain regions, supervised by univariate composite scores representing linear combinations of covariates. Two advantages of the proposed method are that it identifies the associations between brain regions at the voxel level and that supervision is helpful for interpretation. The proposed method was applied to a study on Alzheimer’s disease (AD) that involved using multimodal whole-brain magnetic resonance imaging (MRI) and positron emission tomography (PET). For illustrative purposes, we demonstrate cases of both single- and multimodal brain imaging and longitudinal measurements

    A novel relational regularization feature selection method for joint regression and classification in AD diagnosis

    Get PDF
    In this paper, we focus on joint regression and classification for Alzheimer’s disease diagnosis and propose a new feature selection method by embedding the relational information inherent in the observations into a sparse multi-task learning framework. Specifically, the relational information includes three kinds of relationships (such as feature-feature relation, response-response relation, and sample-sample relation), for preserving three kinds of the similarity, such as for the features, the response variables, and the samples, respectively. To conduct feature selection, we first formulate the objective function by imposing these three relational characteristics along with an ℓ2,1-norm regularization term, and further propose a computationally efficient algorithm to optimize the proposed objective function. With the reduced data, we train two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a support vector classification model to determine the clinical label. We conducted extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the performances of both clinical score prediction and disease status identification, compared to the state-of-the-art methods

    Identifying the neuroanatomical basis of cognitive impairment in Alzheimer's disease by correlation- and nonlinearity-aware sparse Bayesian learning

    Get PDF
    Predicting cognitive performance of subjects from their magnetic resonance imaging (MRI) measures and identifying relevant imaging biomarkers are important research topics in the study of Alzheimer's disease. Traditionally, this task is performed by formulating a linear regression problem. Recently, it is found that using a linear sparse regression model can achieve better prediction accuracy. However, most existing studies only focus on the exploitation of sparsity of regression coefficients, ignoring useful structure information in regression coefficients. Also, these linear sparse models may not capture more complicated and possibly nonlinear relationships between cognitive performance and MRI measures. Motivated by these observations, in this work we build a sparse multivariate regression model for this task and propose an empirical sparse Bayesian learning algorithm. Different from existing sparse algorithms, the proposed algorithm models the response as a nonlinear function of the predictors by extending the predictor matrix with block structures. Further, it exploits not only inter-vector correlation among regression coefficient vectors, but also intra-block correlation in each regression coefficient vector. Experiments on the Alzheimer's Disease Neuroimaging Initiative database showed that the proposed algorithm not only achieved better prediction performance than state-of-the-art competitive methods, but also effectively identified biologically meaningful patterns
    • …
    corecore