975 research outputs found

    Regularized kernel discriminant analysis with a robust kernel for face recognition and verification

    Get PDF
    We propose a robust approach to discriminant kernel-based feature extraction for face recognition and verification. We show, for the first time, how to perform the eigen analysis of the within-class scatter matrix directly in the feature space. This eigen analysis provides the eigenspectrum of its range space and the corresponding eigenvectors as well as the eigenvectors spanning its null space. Based on our analysis, we propose a kernel discriminant analysis (KDA) which combines eigenspectrum regularization with a feature-level scheme (ER-KDA). Finally, we combine the proposed ER-KDA with a nonlinear robust kernel particularly suitable for face recognition/verification applications which require robustness against outliers caused by occlusions and illumination changes. We applied the proposed framework to several popular databases (Yale, AR, XM2VTS) and achieved state-of-the-art performance for most of our experiments

    Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.Comment: This paper has been withdrawn by the author due to the terrible writin

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Face Image Retrieval in Image Processing – A Survey

    Get PDF
    The task of face recognition has been actively researched in recent years. Face recognition has been a challenging and interesting area in real time applications. With the exponentially growing images, large-scale content-based face image retrieval is an enabling technology for many emerging applications. A large number of face recognition algorithms have been developed in last decades. In this paper an attempt is made to review a wide range of methods used for face recognition comprehensively. Here first we present an overview of face recognition and discuss the methodology and its functioning. Thereafter we represent the most recent face recognition techniques listing their advantages and disadvantages. Some techniques specified here also improve the efficiency of face recognition under various illumination and expression condition of face images This include PCA, LDA, SVM, Gabor wavelet soft computing tool like ANN for recognition and various hybrid combination of these techniques. This review investigates all these methods with parameters that challenges face recognition like illumination, pose variation, facial expressions. This paper also focuses on related work done in the area of face image retrieval
    corecore