405 research outputs found

    Self-Supervised and Controlled Multi-Document Opinion Summarization

    Full text link
    We address the problem of unsupervised abstractive summarization of collections of user generated reviews with self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.Finally, we extend the Transformer architecture to allow for multiple reviews as input. Our benchmarks on two datasets against graph-based and recent neural abstractive unsupervised models show that our proposed method generates summaries with a superior quality and relevance.This is confirmed in our human evaluation which focuses explicitly on the faithfulness of generated summaries We also provide an ablation study, which shows the importance of the control setup in controlling hallucinations and achieve high sentiment and topic alignment of the summaries with the input reviews.Comment: 18 pages including 5 pages appendi

    Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

    Get PDF
    Multi-head self-attention is a key component of the Transformer, a state-of-the-art architecture for neural machine translation. In this work we evaluate the contribution made by individual attention heads in the encoder to the overall performance of the model and analyze the roles played by them. We find that the most important and confident heads play consistent and often linguistically-interpretable roles. When pruning heads using a method based on stochastic gates and a differentiable relaxation of the L0 penalty, we observe that specialized heads are last to be pruned. Our novel pruning method removes the vast majority of heads without seriously affecting performance. For example, on the English-Russian WMT dataset, pruning 38 out of 48 encoder heads results in a drop of only 0.15 BLEU.Comment: ACL 2019 (camera-ready

    Simple Recurrent Units for Highly Parallelizable Recurrence

    Full text link
    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model on translation by incorporating SRU into the architecture.Comment: EMNL

    Contextualized Translation of Automatically Segmented Speech

    Full text link
    Direct speech-to-text translation (ST) models are usually trained on corpora segmented at sentence level, but at inference time they are commonly fed with audio split by a voice activity detector (VAD). Since VAD segmentation is not syntax-informed, the resulting segments do not necessarily correspond to well-formed sentences uttered by the speaker but, most likely, to fragments of one or more sentences. This segmentation mismatch degrades considerably the quality of ST models' output. So far, researchers have focused on improving audio segmentation towards producing sentence-like splits. In this paper, instead, we address the issue in the model, making it more robust to a different, potentially sub-optimal segmentation. To this aim, we train our models on randomly segmented data and compare two approaches: fine-tuning and adding the previous segment as context. We show that our context-aware solution is more robust to VAD-segmented input, outperforming a strong base model and the fine-tuning on different VAD segmentations of an English-German test set by up to 4.25 BLEU points.Comment: Interspeech 202

    On Sparsifying Encoder Outputs in Sequence-to-Sequence Models

    Get PDF
    Sequence-to-sequence models usually transfer all encoder outputs to the decoder for generation. In this work, by contrast, we hypothesize that these encoder outputs can be compressed to shorten the sequence delivered for decoding. We take Transformer as the testbed and introduce a layer of stochastic gates in-between the encoder and the decoder. The gates are regularized using the expected value of the sparsity-inducing L0penalty, resulting in completely masking-out a subset of encoder outputs. In other words, via joint training, the L0DROP layer forces Transformer to route information through a subset of its encoder states. We investigate the effects of this sparsification on two machine translation and two summarization tasks. Experiments show that, depending on the task, around 40-70% of source encodings can be pruned without significantly compromising quality. The decrease of the output length endows L0DROP with the potential of improving decoding efficiency, where it yields a speedup of up to 1.65x on document summarization tasks against the standard Transformer. We analyze the L0DROP behaviour and observe that it exhibits systematic preferences for pruning certain word types, e.g., function words and punctuation get pruned most. Inspired by these observations, we explore the feasibility of specifying rule-based patterns that mask out encoder outputs based on information such as part-of-speech tags, word frequency and word position

    Analyzing the Source and Target Contributions to Predictions in Neural Machine Translation

    Get PDF
    In Neural Machine Translation (and, more generally, conditional language modeling), the generation of a target token is influenced by two types of context: the source and the prefix of the target sequence. While many attempts to understand the internal workings of NMT models have been made, none of them explicitly evaluates relative source and target contributions to a generation decision. We argue that this relative contribution can be evaluated by adopting a variant of Layerwise Relevance Propagation (LRP). Its underlying ‘conservation principle’ makes relevance propagation unique: differently from other methods, it evaluates not an abstract quantity reflecting token importance, but the proportion of each token’s influence. We extend LRP to the Transformer and conduct an analysis of NMT models which explicitly evaluates the source and target relative contributions to the generation process. We analyze changes in these contributions when conditioning on different types of prefixes, when varying the training objective or the amount of training data, and during the training process. We find that models trained with more data tend to rely on source information more and to have more sharp token contributions; the training process is non-monotonic with several stages of different nature
    • …
    corecore