611 research outputs found

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    Accurately Estimating Rigid Transformations in Registration using a Boosting-Inspired Mechanism

    Get PDF
    Feature extraction and matching provide the basis of many methods for object registration, modeling, retrieval, and recognition. However, this approach typically introduces false matches, due to lack of features, noise, occlusion, and cluttered backgrounds. In registration, these false matches lead to inaccurate estimation of the underlying transformation that brings the overlapping shapes into best possible alignment. In this paper, we propose a novel boosting-inspired method to tackle this challenging task. It includes three key steps: (i) underlying transformation estimation in the weighted least squares sense, (ii) boosting parameter estimation and regularization via Tsallis entropy, and (iii) weight re-estimation and regularization via Shannon entropy and update with a maximum fusion rule. The process is iterated. The final optimal underlying transformation is estimated as a weighted average of the transformations estimated from the latest iterations, with weights given by the boosting parameters. A comparative study based on real shape data shows that the proposed method outperforms four other state-of-the-art methods for evaluating the established point matches, enabling more accurate and stable estimation of the underlying transformation

    Deep Neural Networks based Meta-Learning for Network Intrusion Detection

    Full text link
    The digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks. Designing an intrusion detection system to ensure security of the industrial ecosystem is difficult as network traffic encompasses various attack types, including new and evolving ones with minor changes. The data used to construct a predictive model for computer networks has a skewed class distribution and limited representation of attack types, which differ from real network traffic. These limitations result in dataset shift, negatively impacting the machine learning models' predictive abilities and reducing the detection rate against novel attacks. To address the challenges, we propose a novel deep neural network based Meta-Learning framework; INformation FUsion and Stacking Ensemble (INFUSE) for network intrusion detection. First, a hybrid feature space is created by integrating decision and feature spaces. Five different classifiers are utilized to generate a pool of decision spaces. The feature space is then enriched through a deep sparse autoencoder that learns the semantic relationships between attacks. Finally, the deep Meta-Learner acts as an ensemble combiner to analyze the hybrid feature space and make a final decision. Our evaluation on stringent benchmark datasets and comparison to existing techniques showed the effectiveness of INFUSE with an F-Score of 0.91, Accuracy of 91.6%, and Recall of 0.94 on the Test+ dataset, and an F-Score of 0.91, Accuracy of 85.6%, and Recall of 0.87 on the stringent Test-21 dataset. These promising results indicate the strong generalization capability and the potential to detect network attacks.Comment: Pages: 15, Figures: 10 and Tables:

    Learning compact hashing codes for large-scale similarity search

    Get PDF
    Retrieval of similar objects is a key component in many applications. As databases grow larger, learning compact representations for efficient storage and fast search becomes increasingly important. Moreover, these representations should preserve similarity, i.e., similar objects should have similar representations. Hashing algorithms, which encode objects into compact binary codes to preserve similarity, have demonstrated promising results in addressing these challenges. This dissertation studies the problem of learning compact hashing codes for large-scale similarity search. Specifically, we investigate two classes of approach: regularized Adaboost and signal-to-noise ratio (SNR) maximization. The regularized Adaboost builds on the classical boosting framework for hashing, while SNR maximization is a novel hashing framework with theoretical guarantee and great flexibility in designing hashing algorithms for various scenarios. The regularized Adaboost algorithm is to learn and extract binary hash codes (fingerprints) of time-varying content by filtering and quantizing perceptually significant features. The proposed algorithm extends the recent symmetric pairwise boosting (SPB) algorithm by taking feature sequence correlation into account. An information-theoretic analysis of the SPB algorithm is given, showing that each iteration of SPB maximizes a lower bound on the mutual information between matching fingerprint pairs. Based on the analysis, two practical regularizers are proposed to penalize those filters generating highly correlated filter responses. A learning-theoretic analysis of the regularized Adaboost algorithm is given. The proposed algorithm demonstrates significant performance gains over SPB for both audio and video content identification (ID) systems. SNR maximization hashing (SRN-MH) uses the SNR metric to select a set of uncorrelated projection directions, and one hash bit is extracted from each projection direction. We first motivate this approach under a Gaussian model for the underlying signals, in which case maximizing SNR is equivalent to minimizing the hashing error probability. This theoretical guarantee differentiates SNR-MH from other hashing algorithms where learning has to be carried out with a continuous relaxation of quantization functions. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. Experiments on both synthetic and real datasets demonstrate the power of SNR-MH to learn compact codes. We extend SNR-MH to two different scenarios in large-scale similarity search. The first extension aims at applications with a larger bit budget. To learn longer hash codes, we propose a multi-bit per projection algorithm, called SNR multi-bit hashing (SNR-MBH), to learn longer hash codes when the number of high-SNR projections is limited. Extensive experiments demonstrate the superior performance of SNR-MBH. The second extension aims at a multi-feature setting, where more than one feature vector is available for each object. We propose two multi-feature hashing methods, SNR joint hashing (SNR-JH) and SNR selection hashing (SNR-SH). SNR-JH jointly considers all feature correlations and learns uncorrelated hash functions that maximize SNR, while SNR-SH separately learns hash functions on each individual feature and selects the final hash functions based on the SNR associated with each hash function. The proposed methods perform favorably compared to other state-of-the-art multi-feature hashing algorithms on several benchmark datasets

    Identifying soccer players on Facebook through predictive analytics

    Get PDF

    Analytics over Encrypted Traffic and Defenses

    Get PDF
    Encrypted traffic flows have been known to leak information about their underlying content through statistical properties such as packet lengths and timing. While traffic fingerprinting attacks exploit such information leaks and threaten user privacy by disclosing website visits, videos streamed, and user activity on messaging platforms, they can also be helpful in network management and intelligence services. Most recent and best-performing such attacks are based on deep learning models. In this thesis, we identify multiple limitations in the currently available attacks and defenses against them. First, these deep learning models do not provide any insights into their decision-making process. Second, most attacks that have achieved very high accuracies are still limited by unrealistic assumptions that affect their practicality. For example, most attacks assume a closed world setting and focus on traffic classification after event completion. Finally, current state-of-the-art defenses still incur high overheads to provide reasonable privacy, which limits their applicability in real-world applications. In order to address these limitations, we first propose an inline traffic fingerprinting attack based on variable-length sequence modeling to facilitate real-time analytics. Next, we attempt to understand the inner workings of deep learning-based attacks with the dual goals of further improving attacks and designing efficient defenses against such attacks. Then, based on the observations from this analysis, we propose two novel defenses against traffic fingerprinting attacks that provide privacy under more realistic constraints and at lower bandwidth overheads. Finally, we propose a robust framework for open set classification that targets network traffic with this added advantage of being more suitable for deployment in resource-constrained in-network devices

    Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications

    Get PDF
    Food authenticity studies are concerned with determining if food samples have been correctly labelled or not. Discriminant analysis methods are an integral part of the methodology for food authentication. Motivated by food authenticity applications, a model-based discriminant analysis method that includes variable selection is presented. The discriminant analysis model is fitted in a semi-supervised manner using both labeled and unlabeled data. The method is shown to give excellent classification performance on several high-dimensional multiclass food authenticity datasets with more variables than observations. The variables selected by the proposed method provide information about which variables are meaningful for classification purposes. A headlong search strategy for variable selection is shown to be efficient in terms of computation and achieves excellent classification performance. In applications to several food authenticity datasets, our proposed method outperformed default implementations of Random Forests, AdaBoost, transductive SVMs and Bayesian Multinomial Regression by substantial margins

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • ā€¦
    corecore