1,008 research outputs found

    Regularization-free estimation in trace regression with symmetric positive semidefinite matrices

    Full text link
    Over the past few years, trace regression models have received considerable attention in the context of matrix completion, quantum state tomography, and compressed sensing. Estimation of the underlying matrix from regularization-based approaches promoting low-rankedness, notably nuclear norm regularization, have enjoyed great popularity. In the present paper, we argue that such regularization may no longer be necessary if the underlying matrix is symmetric positive semidefinite (\textsf{spd}) and the design satisfies certain conditions. In this situation, simple least squares estimation subject to an \textsf{spd} constraint may perform as well as regularization-based approaches with a proper choice of the regularization parameter, which entails knowledge of the noise level and/or tuning. By contrast, constrained least squares estimation comes without any tuning parameter and may hence be preferred due to its simplicity

    Sufficient Dimension Reduction and Modeling Responses Conditioned on Covariates: An Integrated Approach via Convex Optimization

    Get PDF
    Given observations of a collection of covariates and responses (Y,X)∈RpΓ—Rq(Y, X) \in \mathbb{R}^p \times \mathbb{R}^q, sufficient dimension reduction (SDR) techniques aim to identify a mapping f:Rqβ†’Rkf: \mathbb{R}^q \rightarrow \mathbb{R}^k with kβ‰ͺqk \ll q such that Y∣f(X)Y|f(X) is independent of XX. The image f(X)f(X) summarizes the relevant information in a potentially large number of covariates XX that influence the responses YY. In many contemporary settings, the number of responses pp is also quite large, in addition to a large number qq of covariates. This leads to the challenge of fitting a succinctly parameterized statistical model to Y∣f(X)Y|f(X), which is a problem that is usually not addressed in a traditional SDR framework. In this paper, we present a computationally tractable convex relaxation based estimator for simultaneously (a) identifying a linear dimension reduction f(X)f(X) of the covariates that is sufficient with respect to the responses, and (b) fitting several types of structured low-dimensional models -- factor models, graphical models, latent-variable graphical models -- to the conditional distribution of Y∣f(X)Y|f(X). We analyze the consistency properties of our estimator in a high-dimensional scaling regime. We also illustrate the performance of our approach on a newsgroup dataset and on a dataset consisting of financial asset prices.Comment: 34 pages, 1 figur

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad
    • …
    corecore