180 research outputs found

    Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135115/1/mp3283.pd

    Model-Based Iterative Reconstruction in Cone-Beam Computed Tomography: Advanced Models of Imaging Physics and Prior Information

    Get PDF
    Cone-beam computed tomography (CBCT) represents a rapidly developing imaging modality that provides three-dimensional (3D) volumetric images with sub-millimeter spatial resolution and soft-tissue visibility from a single gantry rotation. CBCT tends to have small footprint, mechanical simplicity, open geometry, and low cost compared to conventional diagnostic CT. Because of these features, CBCT has been used in a variety of specialty diagnostic applications, image-guided radiation therapy (on-board CBCT), and surgical guidance (e.g., C-arm based CBCT). However, the current generation of CBCT systems face major challenges in low-contrast, soft-tissue image quality – for example, in the detection of acute intracranial hemorrhage (ICH), which requires a fairly high level of image uniformity, spatial resolution, and contrast resolution. Moreover, conventional approaches in both diagnostic and image-guided interventions that involve a series of imaging studies fail to leverage the wealth of patient-specific anatomical information available from previous scans. Leveraging the knowledge gained from prior images holds the potential for major gains in image quality and dose reduction. Model-based iterative reconstruction (MBIR) attempts to make more efficient use of the measurement data by incorporating a forward model of physical detection processes. Moreover, MBIR allows incorporation of various forms of prior information into image reconstruction, ranging from image smoothness and sharpness to patient-specific anatomical information. By leveraging such advantages, MBIR has demonstrated improved tradeoffs between image quality and radiation dose in multi-detector CT in the past decade and has recently shown similar promise in CBCT. However, the full potential of MBIR in CBCT is yet to be realized. This dissertation explores the capabilities of MBIR in improving image quality (especially low-contrast, soft-tissue image quality) and reducing radiation dose in CBCT. The presented work encompasses new MBIR methods that: i) modify the noise model in MBIR to compensate for noise amplification from artifact correction; ii) design regularization by explicitly incorporating task-based imaging performance as the objective; iii) mitigate truncation effects in a computationally efficient manner; iv) leverage a wealth of patient-specific anatomical information from a previously acquired image; and v) prospectively estimate the optimal amount of prior image information for accurate admission of specific anatomical changes. Specific clinical challenges are investigated in the detection of acute ICH and surveillance of lung nodules. The results show that MBIR can substantially improve low-contrast, soft-tissue image quality in CBCT and enable dose reduction techniques in sequential imaging studies. The thesis demonstrates that novel MBIR methods hold strong potential to overcome conventional barriers to CBCT image quality and open new clinical applications that would benefit from high-quality 3D imaging

    PREDICTION AND CONTROL OF IMAGE PROPERTIES IN ADVANCED COMPUTED TOMOGRAPHY

    Get PDF
    Computed Tomography (CT) is an important technique that is in widespread use for disease diagnosis, monitoring, and interventional procedures. There are many varieties of CT including cone-beam CT (CBCT) that has exceptional high spatial resolution and spectral CT that incorporates energy-dependent measurements for advanced material discrimination. The goal of this research is to quantify image properties using a prospective prediction framework for advanced reconstruction in CBCT and spectral CT systems. These predictors analyze the dependencies of image properties on system configuration, acquisition strategy, and reconstruction regularization design. The prospective estimation of image properties facilitates novel system and acquisition design, adaptive and task-driven imaging, and tuning of regularization for robust and reliable performance. The proposed research quantifies the image properties of model-based iterative reconstruction (MBIR) in CBCT and model-based material decomposition (MBMD) in spectral CT, including spatial resolution, the generalized response to local perturbations, and noise correlation. Predictions are derived with a realistic system model including physical blur, noise correlation, and a poly-energetic model that applies to a variety of spectral CT protocols. Reconstruction methods combining data statistical fidelity and various advanced regularization designs are explored. Prediction accuracy is validated with measured image properties in both simulation and physical experiments. The theoretical understanding is applied to applications with prospective reconstruction regularization design

    Fast Variance Prediction for Iteratively Reconstructed CT with Applications to Tube Current Modulation.

    Full text link
    X-ray computed tomography (CT) is an important, widely-used medical imaging modality. A primary concern with the increasing use of CT is the ionizing radiation dose incurred by the patient. Statistical reconstruction methods are able to improve noise and resolution in CT images compared to traditional filter backprojection (FBP) based reconstruction methods, which allows for a reduced radiation dose. Compared to FBP-based methods, statistical reconstruction requires greater computational time and the statistical properties of resulting images are more difficult to analyze. Statistical reconstruction has parameters that must be correctly chosen to produce high-quality images. The variance of the reconstructed image has been used to choose these parameters, but this has previously been very time-consuming to compute. In this work, we use approximations to the local frequency response (LFR) of CT projection and backprojection to predict the variance of statistically reconstructed CT images. Compared to the empirical variance derived from multiple simulated reconstruction realizations, our method is as accurate as the currently available methods of variance prediction while being computable for thousands of voxels per second, faster than these previous methods by a factor of over ten thousand. We also compare our method to empirical variance maps produced from an ensemble of reconstructions from real sinogram data. The LFR can also be used to predict the power spectrum of the noise and the local frequency response of the reconstruction. Tube current modulation (TCM), the redistribution of X-ray dose in CT between different views of a patient, has been demonstrated to reduce dose when the modulation is well-designed. TCM methods currently in use were designed assuming FBP-based image reconstruction. We use our LFR approximation to derive fast methods for predicting the SNR of linear observers of a statistically reconstructed CT image. Using these fast observability and variance prediction methods, we derive TCM methods specific to statistical reconstruction that, in theory, potentially reduce radiation dose by 20% compared to FBP-specific TCM methods.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111463/1/smschm_1.pd

    Evaluation of image quality and reconstruction parameters in recent PET-CT and PET-MR systems

    No full text
    In this PhD dissertation, we propose to evaluate the impact of using different PET isotopes for the National Electrical Manufacturers Association (NEMA) tests performance evaluation of the GE Signa integrated PET/MR. The methods were divided into three closely related categories: NEMA performance measurements, system modelling and evaluation of the image quality of the state-of-the-art of clinical PET scanners. NEMA performance measurements for characterizing spatial resolution, sensitivity, image quality, the accuracy of attenuation and scatter corrections, and noise equivalent count rate (NECR) were performed using clinically relevant and commercially available radioisotopes. Then we modelled the GE Signa integrated PET/MR system using a realistic GATE Monte Carlo simulation and validated it with the result of the NEMA measurements (sensitivity and NECR). Next, the effect of the 3T MR field on the positron range was evaluated for F-18, C-11, O-15, N-13, Ga-68 and Rb-82. Finally, to evaluate the image quality of the state-of-the-art clinical PET scanners, a noise reduction study was performed using a Bayesian Penalized-Likelihood reconstruction algorithm on a time-of-flight PET/CT scanner to investigate whether and to what extent noise can be reduced. The outcome of this thesis will allow clinicians to reduce the PET dose which is especially relevant for young patients. Besides, the Monte Carlo simulation platform for PET/MR developed for this thesis will allow physicists and engineers to better understand and design integrated PET/MR systems

    Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis: IR to improve IQ for DBT

    Get PDF
    Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data
    • 

    corecore