7,696 research outputs found

    An Algorithmic Framework for Computing Validation Performance Bounds by Using Suboptimal Models

    Full text link
    Practical model building processes are often time-consuming because many different models must be trained and validated. In this paper, we introduce a novel algorithm that can be used for computing the lower and the upper bounds of model validation errors without actually training the model itself. A key idea behind our algorithm is using a side information available from a suboptimal model. If a reasonably good suboptimal model is available, our algorithm can compute lower and upper bounds of many useful quantities for making inferences on the unknown target model. We demonstrate the advantage of our algorithm in the context of model selection for regularized learning problems

    Consistency and convergence rate of phylogenetic inference via regularization

    Full text link
    It is common in phylogenetics to have some, perhaps partial, information about the overall evolutionary tree of a group of organisms and wish to find an evolutionary tree of a specific gene for those organisms. There may not be enough information in the gene sequences alone to accurately reconstruct the correct "gene tree." Although the gene tree may deviate from the "species tree" due to a variety of genetic processes, in the absence of evidence to the contrary it is parsimonious to assume that they agree. A common statistical approach in these situations is to develop a likelihood penalty to incorporate such additional information. Recent studies using simulation and empirical data suggest that a likelihood penalty quantifying concordance with a species tree can significantly improve the accuracy of gene tree reconstruction compared to using sequence data alone. However, the consistency of such an approach has not yet been established, nor have convergence rates been bounded. Because phylogenetics is a non-standard inference problem, the standard theory does not apply. In this paper, we propose a penalized maximum likelihood estimator for gene tree reconstruction, where the penalty is the square of the Billera-Holmes-Vogtmann geodesic distance from the gene tree to the species tree. We prove that this method is consistent, and derive its convergence rate for estimating the discrete gene tree structure and continuous edge lengths (representing the amount of evolution that has occurred on that branch) simultaneously. We find that the regularized estimator is "adaptive fast converging," meaning that it can reconstruct all edges of length greater than any given threshold from gene sequences of polynomial length. Our method does not require the species tree to be known exactly; in fact, our asymptotic theory holds for any such guide tree.Comment: 34 pages, 5 figures. To appear on The Annals of Statistic

    Early stopping and non-parametric regression: An optimal data-dependent stopping rule

    Full text link
    The strategy of early stopping is a regularization technique based on choosing a stopping time for an iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert space, we analyze the early stopping strategy for a form of gradient-descent applied to the least-squares loss function. We propose a data-dependent stopping rule that does not involve hold-out or cross-validation data, and we prove upper bounds on the squared error of the resulting function estimate, measured in either the L2(P)L^2(P) and L2(Pn)L^2(P_n) norm. These upper bounds lead to minimax-optimal rates for various kernel classes, including Sobolev smoothness classes and other forms of reproducing kernel Hilbert spaces. We show through simulation that our stopping rule compares favorably to two other stopping rules, one based on hold-out data and the other based on Stein's unbiased risk estimate. We also establish a tight connection between our early stopping strategy and the solution path of a kernel ridge regression estimator.Comment: 29 pages, 4 figure
    • …
    corecore