487 research outputs found

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    Multilevel quasiseparable matrices in PDE-constrained optimization

    Get PDF
    Optimization problems with constraints in the form of a partial differential equation arise frequently in the process of engineering design. The discretization of PDE-constrained optimization problems results in large-scale linear systems of saddle-point type. In this paper we propose and develop a novel approach to solving such systems by exploiting so-called quasiseparable matrices. One may think of a usual quasiseparable matrix as of a discrete analog of the Green's function of a one-dimensional differential operator. Nice feature of such matrices is that almost every algorithm which employs them has linear complexity. We extend the application of quasiseparable matrices to problems in higher dimensions. Namely, we construct a class of preconditioners which can be computed and applied at a linear computational cost. Their use with appropriate Krylov methods leads to algorithms of nearly linear complexity

    N\mathcal{N}IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs

    Full text link
    Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority hierarchy levels. Active-set methods (ASM) are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the null-space method which requires only a single decomposition per Newton iteration instead of two as it is the case for other IPM solvers. After a priority level has converged we compose a set of active constraints judging upon the dual and project lower priority levels into their null-space. We show that the IPM-HLSP can be expressed in least-squares form which avoids the formation of the quadratic Karush-Kuhn-Tucker (KKT) Hessian. Due to our choice of the null-space basis the IPM-HLSP is as fast as the state-of-the-art ASM-HLSP solver for equality only problems.Comment: 17 pages, 7 figure

    An efficient null space inexact Newton method for hydraulic simulation of water distribution networks

    Full text link
    Null space Newton algorithms are efficient in solving the nonlinear equations arising in hydraulic analysis of water distribution networks. In this article, we propose and evaluate an inexact Newton method that relies on partial updates of the network pipes' frictional headloss computations to solve the linear systems more efficiently and with numerical reliability. The update set parameters are studied to propose appropriate values. Different null space basis generation schemes are analysed to choose methods for sparse and well-conditioned null space bases resulting in a smaller update set. The Newton steps are computed in the null space by solving sparse, symmetric positive definite systems with sparse Cholesky factorizations. By using the constant structure of the null space system matrices, a single symbolic factorization in the Cholesky decomposition is used multiple times, reducing the computational cost of linear solves. The algorithms and analyses are validated using medium to large-scale water network models.Comment: 15 pages, 9 figures, Preprint extension of Abraham and Stoianov, 2015 (https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001089), September 2015. Includes extended exposition, additional case studies and new simulations and analysi
    • …
    corecore