3,627 research outputs found

    Control Regularization for Reduced Variance Reinforcement Learning

    Get PDF
    Dealing with high variance is a significant challenge in model-free reinforcement learning (RL). Existing methods are unreliable, exhibiting high variance in performance from run to run using different initializations/seeds. Focusing on problems arising in continuous control, we propose a functional regularization approach to augmenting model-free RL. In particular, we regularize the behavior of the deep policy to be similar to a policy prior, i.e., we regularize in function space. We show that functional regularization yields a bias-variance trade-off, and propose an adaptive tuning strategy to optimize this trade-off. When the policy prior has control-theoretic stability guarantees, we further show that this regularization approximately preserves those stability guarantees throughout learning. We validate our approach empirically on a range of settings, and demonstrate significantly reduced variance, guaranteed dynamic stability, and more efficient learning than deep RL alone.Comment: Appearing in ICML 201

    Bayesian Policy Gradients via Alpha Divergence Dropout Inference

    Full text link
    Policy gradient methods have had great success in solving continuous control tasks, yet the stochastic nature of such problems makes deterministic value estimation difficult. We propose an approach which instead estimates a distribution by fitting the value function with a Bayesian Neural Network. We optimize an α\alpha-divergence objective with Bayesian dropout approximation to learn and estimate this distribution. We show that using the Monte Carlo posterior mean of the Bayesian value function distribution, rather than a deterministic network, improves stability and performance of policy gradient methods in continuous control MuJoCo simulations.Comment: Accepted to Bayesian Deep Learning Workshop at NIPS 201

    Counterfactual Risk Minimization: Learning from Logged Bandit Feedback

    Full text link
    We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. These constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method -- called Policy Optimizer for Exponential Models (POEM) -- for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. POEM is evaluated on several multi-label classification problems showing substantially improved robustness and generalization performance compared to the state-of-the-art.Comment: 10 page
    • …
    corecore