3 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Deep Learning Designs for Physical Layer Communications

    Get PDF
    Wireless communication systems and their underlying technologies have undergone unprecedented advances over the last two decades to assuage the ever-increasing demands for various applications and emerging technologies. However, the traditional signal processing schemes and algorithms for wireless communications cannot handle the upsurging complexity associated with fifth-generation (5G) and beyond communication systems due to network expansion, new emerging technologies, high data rate, and the ever-increasing demands for low latency. This thesis extends the traditional downlink transmission schemes to deep learning-based precoding and detection techniques that are hardware-efficient and of lower complexity than the current state-of-the-art. The thesis focuses on: precoding/beamforming in massive multiple-inputs-multiple-outputs (MIMO), signal detection and lightweight neural network (NN) architectures for precoder and decoder designs. We introduce a learning-based precoder design via constructive interference (CI) that performs the precoding on a symbol-by-symbol basis. Instead of conventionally training a NN without considering the specifics of the optimisation objective, we unfold a power minimisation symbol level precoding (SLP) formulation based on the interior-point-method (IPM) proximal ‘log’ barrier function. Furthermore, we propose a concept of NN compression, where the weights are quantised to lower numerical precision formats based on binary and ternary quantisations. We further introduce a stochastic quantisation technique, where parts of the NN weight matrix are quantised while the remaining is not. Finally, we propose a systematic complexity scaling of deep neural network (DNN) based MIMO detectors. The model uses a fraction of the DNN inputs by scaling their values through weights that follow monotonically non-increasing functions. Furthermore, we investigate performance complexity tradeoffs via regularisation constraints on the layer weights such that, at inference, parts of network layers can be removed with minimal impact on the detection accuracy. Simulation results show that our proposed learning-based techniques offer better complexity-vs-BER (bit-error-rate) and complexity-vs-transmit power performances compared to the state-of-the-art MIMO detection and precoding techniques
    corecore