8,673 research outputs found

    Filament mechanics in a half-space via regularised Stokeslet segments

    Get PDF
    We present a generalisation of efficient numerical frameworks for modelling fluid-filament interactions via the discretisation of a recently-developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively-simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile 9+2 cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid-structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.Comment: 21 pages, 9 figures. Supplementary Material available upon reques

    A boundary element regularised Stokeslet method applied to cilia and flagella-driven flow

    Full text link
    A boundary element implementation of the regularised Stokeslet method of Cortez is applied to cilia and flagella-driven flows in biology. Previously-published approaches implicitly combine the force discretisation and the numerical quadrature used to evaluate boundary integrals. By contrast, a boundary element method can be implemented by discretising the force using basis functions, and calculating integrals using accurate numerical or analytic integration. This substantially weakens the coupling of the mesh size for the force and the regularisation parameter, and greatly reduces the number of degrees of freedom required. When modelling a cilium or flagellum as a one-dimensional filament, the regularisation parameter can be considered a proxy for the body radius, as opposed to being a parameter used to minimise numerical errors. Modelling a patch of cilia, it is found that: (1) For a fixed number of cilia, reducing cilia spacing reduces transport. (2) For fixed patch dimension, increasing cilia number increases the transport, up to a plateau at 9×99\times 9 cilia. Modelling a choanoflagellate cell it is found that the presence of a lorica structure significantly affects transport and flow outside the lorica, but does not significantly alter the force experienced by the flagellum.Comment: 20 pages, 7 figures, postprin

    Adiabatic regularisation of power spectra in kk-inflation

    Full text link
    We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll kk-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal kk-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.Comment: 17 pages; v2, typos corrected & reference added; v3, rewrote some parts for clarit

    Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development

    Full text link
    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.Comment: 20 pages, 24 figure

    The Dirac Sea Contribution To The Energy Of An Electroweak String

    Get PDF
    We present a systematic determination of the order hbar fermionic energy shift when an electroweak string is perturbed. We show that the combined effect of zero modes, bound states and continuum states is to lower the total fermionic ground state energy of the string when the Higgs instability of the string is excited. The effect of the Dirac sea is thus to destabilise the string. However, this effect can be offset by populating positive energy states. Fermions enhance the stability of an electroweak string with sufficiently populated fermionic bound states.Comment: 57 pages, 11 figure

    Leray and LANS-α\alpha modeling of turbulent mixing

    Get PDF
    Mathematical regularisation of the nonlinear terms in the Navier-Stokes equations provides a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corresponding modelled system of equations. We will consider the large eddy interpretation of two such mathematical regularisation principles, i.e., Leray and LANS−α-\alpha regularisation. The Leray principle introduces a {\bfi smoothed transport velocity} as part of the regularised convective nonlinearity. The LANS−α-\alpha principle extends the Leray formulation in a natural way in which a {\bfi filtered Kelvin circulation theorem}, incorporating the smoothed transport velocity, is explicitly satisfied. These regularisation principles give rise to implied subgrid closures which will be applied in large eddy simulation of turbulent mixing. Comparison with filtered direct numerical simulation data, and with predictions obtained from popular dynamic eddy-viscosity modelling, shows that these mathematical regularisation models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure
    • …
    corecore