77,710 research outputs found

    On the Complexity and Performance of Parsing with Derivatives

    Full text link
    Current algorithms for context-free parsing inflict a trade-off between ease of understanding, ease of implementation, theoretical complexity, and practical performance. No algorithm achieves all of these properties simultaneously. Might et al. (2011) introduced parsing with derivatives, which handles arbitrary context-free grammars while being both easy to understand and simple to implement. Despite much initial enthusiasm and a multitude of independent implementations, its worst-case complexity has never been proven to be better than exponential. In fact, high-level arguments claiming it is fundamentally exponential have been advanced and even accepted as part of the folklore. Performance ended up being sluggish in practice, and this sluggishness was taken as informal evidence of exponentiality. In this paper, we reexamine the performance of parsing with derivatives. We have discovered that it is not exponential but, in fact, cubic. Moreover, simple (though perhaps not obvious) modifications to the implementation by Might et al. (2011) lead to an implementation that is not only easy to understand but also highly performant in practice.Comment: 13 pages; 12 figures; implementation at http://bitbucket.org/ucombinator/parsing-with-derivatives/ ; published in PLDI '16, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 13 - 17, 2016, Santa Barbara, CA, US

    A General Framework for the Derivation of Regular Expressions

    Full text link
    The aim of this paper is to design a theoretical framework that allows us to perform the computation of regular expression derivatives through a space of generic structures. Thanks to this formalism, the main properties of regular expression derivation, such as the finiteness of the set of derivatives, need only be stated and proved one time, at the top level. Moreover, it is shown how to construct an alternating automaton associated with the derivation of a regular expression in this general framework. Finally, Brzozowski's derivation and Antimirov's derivation turn out to be a particular case of this general scheme and it is shown how to construct a DFA, a NFA and an AFA for both of these derivations.Comment: 22 page

    Efficient Dynamic Access Analysis Using JavaScript Proxies

    Full text link
    JSConTest introduced the notions of effect monitoring and dynamic effect inference for JavaScript. It enables the description of effects with path specifications resembling regular expressions. It is implemented by an offline source code transformation. To overcome the limitations of the JSConTest implementation, we redesigned and reimplemented effect monitoring by taking advantange of JavaScript proxies. Our new design avoids all drawbacks of the prior implementation. It guarantees full interposition; it is not restricted to a subset of JavaScript; it is self-maintaining; and its scalability to large programs is significantly better than with JSConTest. The improved scalability has two sources. First, the reimplementation is significantly faster than the original, transformation-based implementation. Second, the reimplementation relies on the fly-weight pattern and on trace reduction to conserve memory. Only the combination of these techniques enables monitoring and inference for large programs.Comment: Technical Repor

    Distributions generated by perturbation of symmetry with emphasis on a multivariate skew tt distribution

    Full text link
    A fairly general procedure is studied to perturbate a multivariate density satisfying a weak form of multivariate symmetry, and to generate a whole set of non-symmetric densities. The approach is general enough to encompass a number of recent proposals in the literature, variously related to the skew normal distribution. The special case of skew elliptical densities is examined in detail, establishing connections with existing similar work. The final part of the paper specializes further to a form of multivariate skew tt density. Likelihood inference for this distribution is examined, and it is illustrated with numerical examples.Comment: full-length version of the published paper, 31 pages with 9 figure

    Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells.

    Get PDF
    Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics

    Singular potentials and annihilation

    Get PDF
    We discuss the regularization of attractive singular potentials −αs/rs-\alpha _{s}/r^{s}, s≥2s\geq 2 by infinitesimal imaginary addition to interaction constant αs=αs±i0\alpha_{s}=\alpha_{s}\pm i0. Such a procedure enables unique definition of scattering observables and is equal to an absorption (creation) of particles in the origin. It is shown, that suggested regularization is an analytical continuation of the scattering amplitudes of repulsive singular potential in interaction constant αs\alpha_{s}. The nearthreshold properties of regularized in a mentioned way singular potential are examined. We obtain expressions for the scattering lengths, which turn to be complex even for infinitesimal imaginary part of interaction constant. The problem of perturbation of nearthreshold states of regular potential by a singular one is treated, the expressions for level shifts and widths are obtained. We show, that the physical sense of suggested regularization is that the scattering observables are insensitive to any details of the short range modification of singular potential, if there exists sufficiently strong inelastic short range interaction. In this case the scattering observables are determined by solutions of Schrodinger equation with regularized potential −(αs±i0)/rs-(\alpha_{s}\pm i0)/r^{s}. We point out that the developed formalism can be applied for the description of systems with short range annihilation, in particular low energy nucleon-antinucleon scattering.Comment: 10 page

    Euclidean spinor Green's functions in the spacetime of a straight cosmic string

    Get PDF
    We determine generally the spinor Green's function and the twisted spinor Green's function in an Euclidean space with a conical-type line singularity. In particular, in the neighbourhood of the point source, we expree them as a sum of the usual Euclidean spinor Green's functin and a regular term. In four dimensions, we use these determinations to calculate the vacuum energy density and the twisted one for a massless spinor field in the spacetime of a straight cosmic string. In the Minkowski spacetime, we determine explicitly the vacuum energy density for a massive twisted spinor field.Comment: 20 pages, latex, no figure

    Local Casimir Effect for a Scalar Field in Presence of a Point Impurity

    Get PDF
    The Casimir effect for a scalar field in presence of delta-type potentials has been investigated for a long time in the case of surface delta functions, modelling semi-transparent boundaries. More recently Albeverio, Cacciapuoti, Cognola, Spreafico and Zerbini [9,10,51] have considered some configurations involving delta-type potentials concentrated at points of R3\mathbb{R}^3; in particular, the case with an isolated point singularity at the origin can be formulated as a field theory on R3∖{0}\mathbb{R}^3\setminus \{\mathbf{0}\}, with self-adjoint boundary conditions at the origin for the Laplacian. However, the above authors have discussed only global aspects of the Casimir effect, focusing their attention on the vacuum expectation value (VEV) of the total energy. In the present paper we analyze the local Casimir effect with a point delta-type potential, computing the renormalized VEV of the stress-energy tensor at any point of R3∖{0}\mathbb{R}^3\setminus \{\mathbf{0}\}; to this purpose we follow the zeta regularization approach, in the formulation already employed for different configurations in previous works of ours (see [29-31] and references therein).Comment: 20 pages, 6 figures; the final version accepted for publication. In the initial part of the paper, possible text overlaps with our previous works arXiv:1104.4330, arXiv:1505.00711, arXiv:1505.01044, arXiv:1505.01651, arXiv:1505.03276. These overlaps aim to make the present paper self-contained, and do not involve the main result
    • …
    corecore