11,207 research outputs found

    Regular subgraphs of almost regular graphs

    Get PDF
    AbstractSuppose every vertex of a graph G has degree k or k + 1 and at least one vertex has degree k + 1. It is shown that if k ≥ 2q − 2 and q is a prime power then G contains a q-regular subgraph (and hence an r-regular subgraph for all r < q, r ≡ q (mod 2)). It is also proved that every simple graph with maximal degree Δ ≥ 2q − 2 and average degree d > ((2q − 2)(2q − 1))(Δ + 1), where q is a prime power, contains a q-regular subgraph (and hence an r-regular subgraph for all r < q, r ≡ q (mod 2)). These results follow from Chevalley's and Olson's theorems on congruences

    3-star factors in random d-regular graphs

    Get PDF
    AbstractThe small subgraph conditioning method first appeared when Robinson and the second author showed the almost sure hamiltonicity of random d-regular graphs. Since then it has been used to study the almost sure existence of, and the asymptotic distribution of, regular spanning subgraphs of various types in random d-regular graphs and hypergraphs. In this paper, we use the method to prove the almost sure existence of 3-star factors in random d-regular graphs. This is essentially the first application of the method to non-regular subgraphs in such graphs

    On rainbow tetrahedra in Cayley graphs

    Full text link
    Let Γn\Gamma_n be the complete undirected Cayley graph of the odd cyclic group ZnZ_n. Connected graphs whose vertices are rainbow tetrahedra in Γn\Gamma_n are studied, with any two such vertices adjacent if and only if they share (as tetrahedra) precisely two distinct triangles. This yields graphs GG of largest degree 6, asymptotic diameter ∣V(G)∣1/3|V(G)|^{1/3} and almost all vertices with degree: {\bf(a)} 6 in GG; {\bf(b)} 4 in exactly six connected subgraphs of the (3,6,3,6)(3,6,3,6)-semi-regular tessellation; and {\bf(c)} 3 in exactly four connected subgraphs of the {6,3}\{6,3\}-regular hexagonal tessellation. These vertices have as closed neighborhoods the union (in a fixed way) of closed neighborhoods in the ten respective resulting tessellations. Generalizing asymptotic results are discussed as well.Comment: 21 pages, 7 figure

    A Characterization of Graphs with Small Palette Index

    Get PDF
    Given an edge-coloring of a graph G, we associate to every vertex v of G the set of colors appearing on the edges incident with v. The palette index of G is defined as the minimum number of such distinct sets, taken over all possible edge-colorings of G. A graph with a small palette index admits an edge-coloring which can be locally considered to be almost symmetric, since few different sets of colors appear around its vertices. Graphs with palette index 1 are r-regular graphs admitting an r-edge-coloring, while regular graphs with palette index 2 do not exist. Here, we characterize all graphs with palette index either 2 or 3 in terms of the existence of suitable decompositions in regular subgraphs. As a corollary, we obtain a complete characterization of regular graphs with palette index 3

    On the existence of zero-sum subsequences of distinct lengths

    Full text link
    In this paper, we obtain a characterization of short normal sequences over a finite Abelian p-group, thus answering positively a conjecture of Gao for a variety of such groups. Our main result is deduced from a theorem of Alon, Friedland and Kalai, originally proved so as to study the existence of regular subgraphs in almost regular graphs. In the special case of elementary p-groups, Gao's conjecture is solved using Alon's Combinatorial Nullstellensatz. To conclude, we show that, assuming every integer satisfies Property B, this conjecture holds in the case of finite Abelian groups of rank two.Comment: 10 pages, to appear in Rocky Mountain Journal of Mathematic

    Edge-partitioning graphs into regular and locally irregular components

    Get PDF
    International audienceA graph is locally irregular if every two adjacent vertices have distinct degrees. Recently, Baudon et al. introduced the notion of decomposition into locally irregular subgraphs. They conjectured that for almost every graph GG, there exists a minimum integer χirr′(G)\chi^{\prime}_{\mathrm{irr}}(G) such that GG admits an edge-partition into χirr′(G)\chi^{\prime}_{\mathrm{irr}}(G) classes, each of which induces a locally irregular graph. In particular, they conjectured that χirr′(G)≤3\chi^{\prime}_{\mathrm{irr}}(G) \leq 3 for every GG, unless GG belongs to a well-characterized family of non-decomposable graphs. This conjecture is far from being settled, as notably (1) no constant upper bound onχirr′(G)\chi^{\prime}_{\mathrm{irr}}(G) is known for GG bipartite, and (2) no satisfactory general upper bound on χirr′(G)\chi^{\prime}_{\mathrm{irr}}(G) is known. We herein investigate the consequences on this question of allowing a decomposition to include regular components as well. As a main result, we prove that every bipartite graph admits such a decomposition into at most 66 subgraphs. This result implies that every graph GG admits a decomposition into at most 6(⌊logχ(G)⌋+1)6(\lfloor \mathrm{log} \chi (G) \rfloor +1) subgraphs whose components are regular or locally irregular

    Sudden emergence of q-regular subgraphs in random graphs

    Full text link
    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large qq-regular subgraph, i.e., a subgraph with all vertices having degree equal to qq. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q=3q=3, we find that the first large qq-regular subgraphs appear discontinuously at an average vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For q>3q>3, the qq-regular subgraph percolation threshold is found to coincide with that of the qq-core.Comment: 7 pages, 5 figure
    • …
    corecore