299 research outputs found

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Bidimensional PR QMF with FIR Filters

    Get PDF
    Multidimensional perfect reconstruction (PR) quadrature mirror filter (QMF) banks with finite impulse response (FIR) filters induced from systems of biorthogonal multivariate scaling functions and wavelets are investigated. In particular, bivariate scaling functions and wavelets with dilation as an expansive integer matrix whose determinant is two in absolute value are considered. Demonstrative quincunxial examples are explicitly given and new FIR filters are constructed

    Linear phase paraunitary filter banks: theory, factorizations and designs

    Get PDF
    M channel maximally decimated filter banks have been used in the past to decompose signals into subbands. The theory of perfect-reconstruction filter banks has also been studied extensively. Nonparaunitary systems with linear phase filters have also been designed. In this paper, we study paraunitary systems in which each individual filter in the analysis synthesis banks has linear phase. Specific instances of this problem have been addressed by other authors, and linear phase paraunitary systems have been shown to exist. This property is often desirable for several applications, particularly in image processing. We begin by answering several theoretical questions pertaining to linear phase paraunitary systems. Next, we develop a minimal factorizdion for a large class of such systems. This factorization will be proved to be complete for even M. Further, we structurally impose the additional condition that the filters satisfy pairwise mirror-image symmetry in the frequency domain. This significantly reduces the number of parameters to be optimized in the design process. We then demonstrate the use of these filter banks in the generation of M-band orthonormal wavelets. Several design examples are also given to validate the theory

    Multidimensional Wave Digital Filters and Wavelets (Mehrdimensionale Wellendigitalfilter und Wavelets)

    Full text link
    Das Kernziel dieser Dissertation ist der Entwurf von orthogonalen, mehrdimensionalen Wellendigitalfiltern fĂŒr nichtseparierbare Abtastmatritzen (z.B. Quincunx-, Hexagonal-, BCCS-Matrix). Damit der Leser einen einfacheren Einstieg in den Filterentwurf hat, sind einige Grundlagen elektrischer Netzwerke und Filter vom analogen als auch vom digitalen Typ in Kapitel 2 angegeben. Wichtiges Beiwerk, welches digitale Filter mit der Wavelettransformation verknĂŒpft, ist zusammengefaßt. Es wird weiterfĂŒhrende Literatur angegeben, die diesen Stoff ausfĂŒhrlicher behandelt. Weiterhin werden wichtige AbtastsĂ€tze prĂ€sentiert und ein angegebener Vergleich ĂŒber die minimale Abtastrate zeigt einen interessanten Aspekt. Kapitel 3 zeigt Verbindungen von Wellendigitalfiltern zu ihren analogen Referenzfiltern. Desweiteren wird gezeigt, wie man eine perfekte Rekonstruktion mit FilterbĂ€nken erreicht ohne eine spektrale Faktorisierung durchfĂŒhren zu mĂŒssen. Bekannte Wavelets, wie z.B. Meyer Wavelets, Sinc-Wavelet (Littlewood-Paley Wavelet), Haar Wavelet, Daubechies Wavelets und Butterworth Wavelets, sind in Kapitel 4 prĂ€sentiert. Weiterhin werden bekannte Filter gezeigt, die (sofern einige EinschrĂ€nkungen eingehalten werden) benutzt werden können um neue orthonormale Wavelets, nĂ€mlich Cosinus-Rolloff Wavelets und Chebyshev Wavelets zu generieren. Es wird auch ein Filter prĂ€sentiert mit welchem eine Verschiebung der Abtastwerte um einen beliebigen reellen Wert effizient erfolgen kann. In den Kapiteln 5, 6 und 7 werden Entwurfsmethoden fĂŒr mehrdimensionale Filter angegeben mit denen nichtseparierbare, orthogonale Wavelets (zwei- und dreidimensional) erzeugt werden können

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Wavelets and Subband Coding

    Get PDF
    First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE
    • 

    corecore