55 research outputs found

    Regular Languages Definable by Lindström Quantifiers

    Get PDF
    In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages

    Regular Languages Definable by Lindström Quantifiers

    Full text link

    Regular Languages Definable by Lindström Quantifiers (Preliminary Version)

    Full text link

    The Expressive Power of CSP-Quantifiers

    Get PDF
    A generalized quantifier QK is called a CSP-quantifier if its defining class K consists of all structures that can be homomorphically mapped to a fixed finite template structure. For all positive integers n ≥ 2 and k, we define a pebble game that characterizes equivalence of structures with respect to the logic Lk∞ω(CSP+n ), where CSP+n is the union of the class Q1 of all unary quantifiers and the class CSPn of all CSP-quantifiers with template structures that have at most n elements. Using these games we prove that for every n ≥ 2 there exists a CSP-quantifier with template of size n + 1 which is not definable in Lω∞ω(CSP+n ). The proof of this result is based on a new variation of the well-known Cai-Fürer-Immerman construction.publishedVersionPeer reviewe

    Generalized Quantifiers and Logical Reducibilities

    Get PDF
    We consider extensions of first order logic (FO) and least fixed point logic (LFP) with generalized quantifiers in the sense of Lindström [Lin66]. We show that adding a finite set of such quantifiers to LFP fails to capture all polynomial time properties of structures, even over a fixed signature. We show that this strengthens results in [Hel92] and [KV92a]. We also consider certain regular infinite sets of Lindström quantifiers, which correspond to a natural notion of logical reducibility. We show that if there is any recursively enumerable set of quantifiers that can be added to FO (or LFP) to capture P, then there is one with strong uniformity conditions. This is established through a general result, linking the existence of complete problems for complexity classes with respect to the first order translations of [Imm87] or the elementary reductions of [LG77] with the existence of recursive index sets for these classes

    Limitations of Game Comonads via Homomorphism Indistinguishability

    Full text link
    Abramsky, Dawar, and Wang (2017) introduced the pebbling comonad for k-variable counting logic and thereby initiated a line of work that imports category theoretic machinery to finite model theory. Such game comonads have been developed for various logics, yielding characterisations of logical equivalences in terms of isomorphisms in the associated co-Kleisli category. We show a first limitation of this approach by studying linear-algebraic logic, which is strictly more expressive than first-order counting logic and whose k-variable logical equivalence relations are known as invertible-map equivalences (IM). We show that there exists no finite-rank comonad on the category of graphs whose co-Kleisli isomorphisms characterise IM-equivalence, answering a question of \'O Conghaile and Dawar (CSL 2021). We obtain this result by ruling out a characterisation of IM-equivalence in terms of homomorphism indistinguishability and employing the Lov\'asz-type theorems for game comonads established by Dawar, Jakl, and Reggio (2021). Two graphs are homomorphism indistinguishable over a graph class if they admit the same number of homomorphisms from every graph in the class. The IM-equivalences cannot be characterised in this way, neither when counting homomorphisms in the natural numbers, nor in any finite prime field.Comment: Minor corrections in Section

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF
    • …
    corecore