25,601 research outputs found

    On matchings and factors of graphs /

    Get PDF
    In Section 1, we recall the historical sketch of matching and factor theory of graphs, and also introduce some necessary definitions and notation. In Section 2, we present a sufficient condition for the existence of a (g, f)-factor in graphs with the odd-cycle property, which is simpler than that of Lovasz\u27s (g, f)-Factor Theorem. From this, we derive some further results, and we show that (a) every r-regular graph G with the odd-cycle property has a k-factor, where 0 ≤ k ≤ r and k|V(G)| ≡ 0 (mod 2), (b) every graph G with the strong odd-cycle property with k|V(G)|≡ 0 (mod 2) is k-factorable if and only if G is a km-regular graph for some m ≥ 1, and (c) every regular graph of even order with the strong odd-cycle property is of the second class (i.e. the edge chromatic number is Δ). Chvátal [26] presented the following two conjectures that (1) a graph G has a 2-factor if tough(G) ≥ 3/2, and (2) a graph G has a k-factor if k|V(G)| ≡ 0 (mod 2) and tough(G) ≥ k. Enomoto et.al. [32] proved the second conjecture. They also proved the sharpness of the bound on tough(G) that guarantees the existence of a k-factor. This implies that the first conjecture is false. In Section 3, we show that the result of the second conjecture can be improved in some sense, and the first conjecture is also true if the graph considered has the odd-cycle property. Anderson [3] stated that a graph G of even order has a 1-factor if bind(G) ≥ 4/3, and Katerinis and Woodall [48] proved that a graph G of order n has a k-factor if bind(G) ˃ (2k -I)(n - 1)/(k(n - 2) + 3), where k ≥ 2, n ≥ 4k - 6 and kn ≡ 0 (mod 2). In Section 4, we shall present some similar conditions for the existence of [a, b]-factors. In Section 5, we study the existence of [a, b]-parity-factors in a graph, among which we extend some known theorems from 1-factors to {1, 3, ... , 2n - 1}-factors, or from k-factors to [a, b]-parity-factors. Also, extending Petersen\u27s 2-Factorization Theorem, we proved that a graph is [2a, 2b]-even-factorable if and only if it is a [2na, 2nb]-even-graph for some n ≥ 1. Plummer showed that (a) (in [58]) every graph G of even order is k-extendable if tough(G) ˃ k, and (b) (in [59]) every (2k+1)-connected graph G is k-extendable if G is K1,3-free, respectively. In Section 6, we give a counterpart of the former in terms of binding number, and extend the latter from K1,3-free graphs to K1,n-free graphs. Furthermore, we present a result toward the problem, posed by Saito [61] and Plummer [60], of characterizing the graphs that are maximal k-extendable

    Color/kinematics duality for general abelian orbifolds of N=4 super Yang-Mills theory

    Get PDF
    To explore color/kinematics duality for general representations of the gauge group we formulate the duality for general abelian orbifolds of the SU(N), N=4 super Yang-Mills theory in four dimensions, which have fields in the bi-fundamental representation, and use it to construct explicitly complete four-vector and four-scalar amplitudes at one loop. For fixed number of supercharges, graph-organized L-loop n-point integrands of all orbifold theories are given in terms of a fixed set of polynomials labeled by L representations of the orbifold group. In contrast to the standard duality-satisfying presentation of amplitudes of the N=4 super Yang-Mills theory, each graph may appear several times with different internal states. The color and R-charge flow provide a way to deform the amplitudes of orbifold theories to those of more general quiver gauge theories which do not necessarily exhibit color/kinematics duality on their own. Based on the organization of amplitudes required by the duality between color and kinematics in orbifold theories we show how the amplitudes of certain non-factorized matter-coupled supergravity theories can be found through a double-copy construction. We also carry out a comprehensive search for theories with fields solely in the adjoint representation of the gauge group and amplitudes exhibiting color/kinematics duality for all external states and find an interesting relation between supersymmetry and existence of the duality.Comment: 51 pages, 7 figures, PDFLaTex, typos fixed, minor changes in section 3.

    Scattering amplitudes in YM and GR as minimal model brackets and their recursive characterization

    Full text link
    Attached to both Yang-Mills and General Relativity about Minkowski spacetime are distinguished gauge independent objects known as the on-shell tree scattering amplitudes. We reinterpret and rigorously construct them as L∞L_\infty minimal model brackets. This is based on formulating YM and GR as differential graded Lie algebras. Their minimal model brackets are then given by a sum of trivalent (cubic) Feynman tree graphs. The amplitudes are gauge independent when all internal lines are off-shell, not merely up to L∞L_\infty isomorphism, and we include a homological algebra proof of this fact. Using the homological perturbation lemma, we construct homotopies (propagators) that are optimal in bringing out the factorization of the residues of the amplitudes. Using a variant of Hartogs extension for singular varieties, we give a rigorous account of a recursive characterization of the amplitudes via their residues independent of their original definition in terms of Feynman graphs (this does neither involve so-called BCFW shifts nor conditions at infinity under such shifts). Roughly, the amplitude with NN legs is the unique section of a sheaf on a variety of NN complex momenta whose residues along a finite list of irreducible codimension one subvarieties (prime divisors) factor into amplitudes with less than NN legs. The sheaf is a direct sum of rank one sheaves labeled by helicity signs. To emphasize that amplitudes are robust objects, we give a succinct list of properties that suffice for a dgLa so as to produce the YM and GR amplitudes respectively.Comment: 51 page

    Representation of Cyclotomic Fields and Their Subfields

    Full text link
    Let \K be a finite extension of a characteristic zero field \F. We say that the pair of n×nn\times n matrices (A,B)(A,B) over \F represents \K if \K \cong \F[A]/ where \F[A] denotes the smallest subalgebra of M_n(\F) containing AA and is an ideal in \F[A] generated by BB. In particular, AA is said to represent the field \K if there exists an irreducible polynomial q(x)\in \F[x] which divides the minimal polynomial of AA and \K \cong \F[A]/. In this paper, we identify the smallest circulant-matrix representation for any subfield of a cyclotomic field. Furthermore, if pp is any prime and \K is a subfield of the pp-th cyclotomic field, then we obtain a zero-one circulant matrix AA of size p×pp\times p such that (A,\J) represents \K, where \J is the matrix with all entries 1. In case, the integer nn has at most two distinct prime factors, we find the smallest 0-1 companion-matrix that represents the nn-th cyclotomic field. We also find bounds on the size of such companion matrices when nn has more than two prime factors.Comment: 17 page

    Exact, convergent periodic-orbit expansions of individual energy eigenvalues of regular quantum graphs

    Get PDF
    We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular quantum graphs. One simple application is the energy levels of a particle in a piecewise constant potential. Since the classical ray trajectories (including ray splitting) in such systems are strongly chaotic, this result provides the first explicit quantization of a classically chaotic system.Comment: 25 pages, 5 figure
    • …
    corecore