27 research outputs found

    Studies of the Relationship Between mRNA Stability and Gene Function in Saccharomyces cerevisiae

    Get PDF
    Twelve S. cerevisiae cDNAs, characterised by Santiago (1986) on the basis of the half-lifes of the respective mRNAs, have been partially or completely sequenced. To four have been assigned a definite function. cDNA10, which generates a long half-life mRNA, encodes the glucose-inducible form of the glycolytic enzyme, enolase. cDNAs 90, 39 and 13, each of which generates a short half-life mRNA, encode ribosomal proteins L3, L29 and YL6 respectively. cDNA46, which generates a long half-life mRNA, is related to a mouse gene of unknown function, MER5. In addition, there is circumstantial evidence that among the unidentified cDNAs that generate short half-life mRNAs are several that encode ribosomal proteins

    Reversal of a Neurospora Translocation by Crossing over Involving Displaced Rdna, and Methylation of the Rdna Segments That Result from Recombination

    Get PDF
    In translocation OY321 of Neurospora crassa, the nucleolus organizer is divided into two segments, a proximal portion located interstitially in one interchange chromosome, and a distal portion now located terminally on another chromosome, linkage group I. In crosses of Translocation x Translocation, exceptional progeny are recovered nonselectively in which the chromosome sequence has apparently reverted to Normal. Genetic, cytological, and molecular evidence indicates that reversion is the result of meiotic crossing over between homologous displaced rDNA repeats. Marker linkages are wild type in these exceptional progeny. They differ from wild type, however, in retaining an interstitial block of rRNA genes which can be demonstrated cytologically by the presence of a second, small interstitial nucleolus and genetically by linkage of an rDNA restriction site polymorphism to the mating-type locus in linkage group I. The interstitial rDNA is more highly methylated than the terminal rDNA. The mechanism by which methylation enzymes distinguish between interstitial rDNA and terminal rDNA is unknown. Some hypotheses are considered

    Comparative mitochondrial genomics toward understanding genetics and evolution of arbuscular mycorrhizal fungi

    Get PDF
    Les champignons mycorhiziens arbusculaires (CMA) sont trĂšs rĂ©pandus dans le sol oĂč ils forment des associations symbiotiques avec la majoritĂ© des plantes appelĂ©es mycorhizes arbusculaires. Le dĂ©veloppement des CMA dĂ©pend fortement de la plante hĂŽte, de telle sorte qu'ils ne peuvent vivre Ă  l'Ă©tat saprotrophique, par consĂ©quent ils sont considĂ©rĂ©s comme des biotrophes obligatoires. Les CMA forment une lignĂ©e Ă©volutive basale des champignons et ils appartiennent au phylum Glomeromycota. Leurs mycĂ©lia sont formĂ©s d’un rĂ©seau d’hyphes cĂ©nocytiques dans lesquelles les noyaux et les organites cellulaires peuvent se dĂ©placer librement d’un compartiment Ă  l’autre. Les CMA permettent Ă  la plante hĂŽte de bĂ©nĂ©ficier d'une meilleure nutrition minĂ©rale, grĂące au rĂ©seau d'hyphes extraradiculaires, qui s'Ă©tend au-delĂ  de la zone du sol explorĂ©e par les racines. Ces hyphes possĂšdent une grande capacitĂ© d'absorption d’élĂ©ments nutritifs qui vont ĂȘtre transportĂ©s par ceux-ci jusqu’aux racines. De ce fait, les CMA amĂ©liorent la croissance des plantes tout en les protĂ©geant des stresses biotiques et abiotiques. MalgrĂ© l’importance des CMA, leurs gĂ©nĂ©tique et Ă©volution demeurent peu connues. Leurs Ă©tudes sont ardues Ă  cause de leur mode de vie qui empĂȘche leur culture en absence des plantes hĂŽtes. En plus leur diversitĂ© gĂ©nĂ©tique intra-isolat des gĂ©nomes nuclĂ©aires, complique d’avantage ces Ă©tudes, en particulier le dĂ©veloppement des marqueurs molĂ©culaires pour des Ă©tudes biologiques, Ă©cologiques ainsi que les fonctions des CMA. C’est pour ces raisons que les gĂ©nomes mitochondriaux offrent des opportunitĂ©s et alternatives intĂ©ressantes pour Ă©tudier les CMA. En effet, les gĂ©nomes mitochondriaux (mt) publiĂ©s Ă  date, ne montrent pas de polymorphismes gĂ©nĂ©tique intra-isolats. Cependant, des exceptions peuvent exister. Pour aller de l’avant avec la gĂ©nomique mitochondriale, nous avons besoin de gĂ©nĂ©rer beaucoup de donnĂ©es de sĂ©quençages de l’ADN mitochondrial (ADNmt) afin d’étudier les mĂ©chanismes Ă©volutifs, la gĂ©nĂ©tique des population, l’écologie des communautĂ©s et la fonction des CMA. Dans ce contexte, l’objectif de mon projet de doctorat consiste Ă : 1) Ă©tudier l’évolution des gĂ©nomes mt en utilisant l’approche de la gĂ©nomique comparative au niveau des espĂšces proches, des isolats ainsi que des espĂšces phylogĂ©nĂ©tiquement Ă©loignĂ©es chez les CMA; 2) Ă©tudier l’hĂ©rĂ©ditĂ© gĂ©nĂ©tique des gĂ©nomes mt au sein des isolats de l’espĂšce modĂšle Rhizophagus irregularis par le biais des anastomoses ; 3) Ă©tudier l’organisation des ADNmt et les gĂšnes mt pour le dĂ©veloppement des marqueurs molĂ©culaires pour des Ă©tudes phylogĂ©nĂ©tiques. Nous avons utilisĂ© l’approche dite ‘whole genome shotgun’ en pyrosĂ©quençage 454 et Illumina HiSeq pour sĂ©quencer plusieurs taxons de CMA sĂ©lectionnĂ©s selon leur importance et leur disponibilitĂ©. Les assemblages de novo, le sĂ©quençage conventionnel Sanger, l’annotation et la gĂ©nomique comparative ont Ă©tĂ© rĂ©alisĂ©s pour caractĂ©riser des ADNmt complets. Nous avons dĂ©couvert plusieurs mĂ©canismes Ă©volutifs intĂ©ressant chez l’espĂšce Gigaspora rosea dans laquelle le gĂ©nome mt est complĂštement remaniĂ© en comparaison avec Rhizophagus irregularis isolat DAOM 197198. En plus nous avons mis en Ă©vidence que deux gĂšnes cox1 et rns sont fragmentĂ©s en deux morceaux. Nous avons dĂ©montrĂ© que les ARN transcrits les deux fragments de cox1 se relient entre eux par Ă©pissage en trans ‘Trans-splicing’ Ă  l’aide de l’ARN du gene nad5 I3 qui met ensemble les deux ARN cox1.1 et cox1.2 en formant un ARN complet et fonctionnel. Nous avons aussi trouvĂ© une organisation de l’ADNmt trĂšs particuliĂšre chez l’espĂšce Rhizophagus sp. Isolat DAOM 213198 dont le gĂ©nome mt est constituĂ© par deux chromosomes circulaires. En plus nous avons trouvĂ© une quantitĂ© considĂ©rable des sĂ©quences apparentĂ©es aux plasmides ‘plasmid-related sequences’ chez les Glomeraceae par rapport aux Gigasporaceae, contribuant ainsi Ă  une Ă©volution rapide des ADNmt chez les Glomeromycota. Nous avons aussi sĂ©quencĂ© plusieurs isolats de l’espĂšces R. irregularis et Rhizophagus sp. pour dĂ©cortiquer leur position phylogĂ©nĂ©que et infĂ©rer des relations Ă©volutives entre celles-ci. La comparaison gĂ©nomique mt nous montrĂ© l’existence de plusieurs Ă©lĂ©ments mobiles comme : des cadres de lecture ‘open reading frames (mORFs)’, des sĂ©quences courtes inversĂ©es ‘short inverted repeats (SIRs)’, et des sĂ©quences apparentĂ©es aux plasimdes ‘plasmid-related sequences (dpo)’ qui impactent l’ordre des gĂšnes mt et permettent le remaniement chromosomiques des ADNmt. Tous ces divers mĂ©canismes Ă©volutifs observĂ©s au niveau des isolats, nous permettent de dĂ©velopper des marqueurs molĂ©culaires spĂ©cifiques Ă  chaque isolat ou espĂšce de CMA. Les donnĂ©es gĂ©nĂ©rĂ©es dans mon projet de doctorat ont permis d’avancer les connaissances fondamentales des gĂ©nomes mitochondriaux non seulement chez les GlomeromycĂštes, mais aussi de chez le rĂšgne des Fungi et les eucaryotes en gĂ©nĂ©ral. Les trousses molĂ©culaires dĂ©veloppĂ©es dans ce projet peuvent servir Ă  des Ă©tudes de la gĂ©nĂ©tique des populations, des Ă©changes gĂ©nĂ©tiques et l’écologie des CMA ce qui va contribuer Ă  la comprĂ©hension du rĂŽle primorial des CMA en agriculture et environnement.Arbuscular mycorrhizal fungi (AMF) are the most widespread eukaryotic symbionts, forming mutualistic associations known as Arbuscular Mycorrhizae with the majority of plantroots. AMF are obligate biotrophs belonging to an ancient fungal lineage of phylum Glomeromycota. Their mycelia are formed by a complex network made up of coenocytic hyphae, where nuclei and cell organelles can freely move from one compartment to another. AMF are commonly acknowledged to improve plant growth by enhancing mineral nutrient uptake, in particular phosphate and nitrate, and they confer tolerance to abiotic and biotic stressors for plants. Despite their significant roles in ecosystems, their genetics and evolution are not well understood. Studying AMF is challenging due to their obligate biotrophy, their slow growth, and their limited morphological criteria. In addition, intra-isolate genetic polymorphism of nuclear DNA brings another level of complexity to the investigation of the biology, ecology and function of AMF. Genetic polymorphism of nuclear DNA within a single isolate limits the development of efficient molecular markers mainly at lower taxonomic levels (i.e. the inter-isolate level). Instead, mitochondrial (mt) genomics have been used as an attractive alternative to study AMF. In AMF, mt genomes have been shown to be homogeneous, or at least much less polymorphic than nuclear DNA. However, by generating large mt sequence datasets we can investigate the efficiency and usefulness of developing molecular marker toolkits in order to study the dynamic and evolutionary mechanisms of AMF. This approach also elucidates the population genetics, community ecology and functions of Glomeromycota. Therefore, the objectives of my Ph.D. project were: 1) To investigate mitochondrial genome evolution using comparative mitogenomic analyses of closely related species and isolates as well as phylogenetically distant taxa of AMF; 2) To explore mt genome inheritance among compatible isolates of the model AMF Rhizophagus irregularis through anastomosis formation; and 3) To assess mtDNA and mt genes for marker development and phylogenetic analyses. We used whole genome shotgun, 454 pyrosequencing and HiSeq Illimina to sequence AMF taxa selected according to their importance and availability in our lab collections. De novo assemblies, Sanger sequencing, annotation and comparative genomics were then performed to characterize complete mtDNAs. We discovered interesting evolutionary mechanisms in Gigaspora rosea: 1) we found a fully reshuffled mt genome synteny compared to Rhizaphagus irregularis DAOM 197198; and 2) we discovered the presence of fragmented cox1 and rns genes. We demonstrated that two cox1 transcripts are joined by trans-splicing. We also reported an unusual mtDNA organization in Rhizophagus sp. DAOM 213198, whose mt genome consisted of two circular mtDNAs. In addition, we observed a considerably higher number of mt plasmidrelated sequences in Glomeraceae compared with Gigasporaceae, contributing a mechanism for faster evolution of mtDNA in Glomeromycota. We also sequenced other isolates of R. irregularis and Rhizophagus sp. in order to unravel their evolutionary relationships and to develop molecular toolkits for their discrimination. Comparative mitogenomic analyses of these mtDNAs revealed the occurrence of many mobile elements such as mobile open reading frames (mORFs), short inverted repeats (SIRs), and plasmid-related sequences (dpo) that impact mt genome synteny and mtDNA alteration. All together, these evolutionary mechanisms among closely related AMF isolates give us clues for designing reliable and efficient intra- and inter-specific markers to discriminate closely related AMF taxa and isolates. Data generated in my Ph.D. project advances our knowledge of mitochondrial genomes evolution not only in Glomeromycota, but also in the larger framework of the Fungal kingdom and Eukaryotes in general. Molecular toolkits developed in this project will offer new opportunities to study population genetics, genetic exchanges and ecology of AMF. In turn, this work will contribute to understanding the role of these fungi in nature, with potential applications in both agriculture and environmental protection

    Application of molecular biology in the evaluation of Lactobacillus plantarum strains as silage inoculants

    Get PDF
    Methods to distinguish between strains of Lactobacillus plantarum were investigated with the aim of analysing strain heterogeneity in grass silage. Chromosomal restriction endonuclease patterns, rDNA fingerprints and plasmid profiling were applied to isolates from five different well preserved grass silages and a number of dominant strains were identified. Ribotyping proved to be a most useful technique for strain differentiation using restriction enzymes EcoRl and BarriHl to achieve optimum results. Plasmid profiling complemented the information obtained from ribotyping while chromosomal restriction endonuclease analysis proved to be too cumbersome for routine use. Having demonstrated that L. plantarum effected improved forage preservation when applied at an inoculation rate of lxlO6 cfu/g grass, a number of L. plantarum strains were investigated for their suitability as grass silage inoculants. A novel assay was designed to assess the competitiveness of each L. plantarum strain when co-inoculated individually with the internal standard strain, L. plantarum DCU101. The plasmid based strain specific DNA probe, pGBlOO, was used to enumerate the proportion of L. plantarum DCU101 in each treatment over the fourteen day ensilage period. The results demonstrated that competitiveness and dominance do occur within the silo and the most competitive strain, L. plantarum B2, was used in further silo trials to establish its usefulness as a bacterial silage inoculant. The PCR amplification of the VI and V6 variable regions of 16S rRNA genes from L. plantarum was investigated for its usefulness in obtaining species and genus specific probes. Direct sequencing from PCR was investigated but failed due to the small size of the PCR fragment (about lOObp) which resulted in its rapid renaturation. The cloned PCR amplified VI and V6 regions from three strains of L. plantarum were sequenced and analysed using hybridisation experiments and computer assisted alignments with sequences extracted from the GenBank and EMBL databases. On alignment of the VI and V6 regions of thirty species of Lactobacillus and a variety of Gram-negative and Gram-positive genera, three L. plantarum specific oligonucleotide sequences were identified. The specificity of these selected oligonucleotides was confirmed using the BLAST alignment programme

    Population genetic analysis and characterization of nuclear gene regions and mitogenomes in four European "Donax" species

    Get PDF
    Programa Oficial de Doutoramento en BioloxĂ­a Celular e Molecular . 5004V01[Abstract] The wedge clam Donax trunculus is an important shellfish resource in Europe that is in regression in Galician natural beds (Northwest of Spain). Nowadays in Galicia, only two markets located in Arousa and Cedeira sell this species, demonstrating the decline of this resource. In order to conserve, manage and recover this resource effectively, the following genetic analyses have been carried out: First, mitochondrial DNA markers (16S and Cytb) were used to analyse the population diversity and population structure of natural beds from Iberian Peninsula. Furthermore, the existence of Donax vittatus in the Atlantic coast of Iberian Peninsula, as another species to be conserved and/or managed, the development of molecular markers was needed to characterize its natural beds and to carry out studies similar to those conducted for D. trunculus. Likewise, given the existence of other Donax species (Donax semistriatus and Donax variegatus) in this region, the 5S rDNA, the internal transcribed spacers (ITS1 and ITS2) and the mitogenomes were characterized in these four species, in order to describe species-specific molecular markers for their identification and to construct the phylogenetic relationships within the order Veneroida.[Resumen] La coquina Donax trunculus es un importante recurso marisquero en Europa que se encuentra en regresiĂłn en los bancos naturales gallegos (noroeste de España). Actualmente, en Galicia, sĂłlo las cofradĂ­as de Arousa y Cedeira comercializan esta especie, poniendo de manifiesto su declive. Con el propĂłsito de conservar, gestionar y recuperar este recurso de manera eficaz, se han realizado los siguientes anĂĄlisis genĂ©ticos: En primer lugar, la evaluaciĂłn genĂ©tico-poblacional de bancos naturales de la PenĂ­nsula IbĂ©rica mediante marcadores de ADN mitocondrial (16S y Citb) para conocer la diversidad genĂ©tica y la estructura poblacional. AdemĂĄs, ante la presencia de Donax vittatus en la costa atlĂĄntica de la PenĂ­nsula IbĂ©rica, como otra especie a conservar y/o gestionar, fue necesario el desarrollo de marcadores moleculares para caracterizar sus bancos naturales y llevar a cabo estudios similares a los realizados para D. trunculus. AsĂ­ mismo, dada la existencia de otras especies del gĂ©nero Donax (Donax semistriatus y Donax variegatus) en el ĂĄrea de distribuciĂłn a analizar, se caracterizaron el ADNr 5S, los espaciadores transcritos internos (ITS1 e ITS2), y los genomas mitocondriales en las cuatro especies objeto de estudio con el fin de obtener marcadores especie-especĂ­ficos para su identificaciĂłn y construir las relaciones filogenĂ©ticas dentro del orden Veneroida.[Resumo] A cadelucha Donax trunculus Ă© un importante recurso marisqueiro en Europa que se atopa en regresiĂłn nos bancos naturais galegos (noroeste de España). Actualmente, en Galicia, sĂł as cofrarĂ­as de Arousa e Cedeira comercializan esta especie, poñendo de manifesto o seu declive. Co propĂłsito de conservar, xestionar e recuperar este recurso de maneira eficaz, realizĂĄronse as seguintes anĂĄlises xenĂ©ticas: En primeiro lugar, a avaliaciĂłn xenĂ©tico-poboacional de bancos naturais da PenĂ­nsula IbĂ©rica mediante marcadores de ADN mitocondrial (16S e Citb) para coñecer a diversidade xenĂ©tica e a estrutura poboacional. Ademais, ante a presenza de Donax vittatus na costa atlĂĄntica da PenĂ­nsula IbĂ©rica, como outra especie para conservar e/ou xestionar, foi necesario o desenvolvemento de marcadores moleculares para caracterizar os seus bancos naturais e levar a cabo estudos similares aos realizados para D. trunculus. AsĂ­ mesmo, dada a existencia doutras especies do xĂ©nero Donax (Donax semistriatus e Donax variegatus) na ĂĄrea de distribuciĂłn a analizar, caracterizĂĄronse o ADNr 5S, os espaciadores transcritos internos (ITS1 e ITS2), e os xenomas mitocondriales nas catro especies obxecto de estudo co fin de obter marcadores especieespecĂ­ficos para sĂșa identificaciĂłn e construĂ­r as relaciĂłns filoxenĂ©ticas dentro da orde Veneroida

    BRIDGE: Final Report 1994, Vol. II.

    Get PDF

    La génomique évolutive mitochondriale révÚle des échanges génétiques et la ségrégation chez les GloméromycÚtes

    Get PDF
    Les champignons mycorhiziens Ă  arbuscules (CMA) sont des organismes microscopiques du sol qui jouent un rĂŽle crucial dans les Ă©cosystĂšmes naturels et que l’on retrouve dans tous les habitats de la planĂšte. Ils vivent en relation symbiotique avec la vaste majoritĂ© des plantes terrestres. Ils sont des biotrophes obligatoires, c'est-Ă -dire qu'ils ne peuvent croĂźtre qu'en prĂ©sence d'une plante hĂŽte. Cette symbiose permet entre autres Ă  la plante d'acquĂ©rir des nutriments supplĂ©mentaires, en particulier du phosphore et du nitrate. MalgrĂ© le fait que cette symbiose apporte des services importants aux Ă©cosystĂšmes, la richesse des espĂšces, la structure des communautĂ©s, ainsi que la diversitĂ© fonctionnelle des CMA sont mal connues et l'approfondissement des connaissances dans ces domaines dĂ©pend d’outils de diagnostic molĂ©culaire. Cependant, la prĂ©sence de polymorphisme nuclĂ©aire intra-isolat combinĂ© Ă  un manque de donnĂ©es gĂ©nomiques dans diffĂ©rents groupes phylogĂ©nĂ©tique de ces champignons complique le dĂ©veloppement de marqueurs molĂ©culaires et la dĂ©termination de l'affiliation Ă©volutive Ă  hauts niveaux de rĂ©solution (c.a.d. entre espĂšces gĂ©nĂ©tiquement similaires et/ou isolats de la mĂȘme espĂšce). . Pour ces raisons, il semble une bonne alternative d’utiliser un systĂšme gĂ©nĂ©tique diffĂ©rent en ciblant le gĂ©nome mitochondrial, qui a Ă©tĂ© dĂ©montrĂ© homogĂšne au sein d'un mĂȘme isolat de CMA. Cependant, Ă©tant donnĂ© le mode de vie particulier de ces organismes, une meilleure comprĂ©hension des processus Ă©volutifs mitochondriaux est nĂ©cessaire afin de valoriser l'utilisation de tels marqueurs dans des Ă©tudes de diversitĂ© et en gĂ©nĂ©tique des populations. En ce sens, mon projet de doctorat consistait Ă  investiguerĂ©tudier: i) les vecteurs de divergences inter-isolats et -espĂšces gĂ©nĂ©tiquement rapprochĂ©esphylogĂ©nĂ©tiquement apparentĂ©es, ii) la plasticitĂ© des gĂ©nomes mitochondriaux, iii) l'hĂ©ritabilitĂ© mitochondriale et les mĂ©canismes potentiels de sĂ©grĂ©gation, ainsi que iv) la diversitĂ© mitochondriale intra-isolat in situ. À l'aide de la gĂ©nomique mitochondriale comparative, en utilisant le sĂ©quençage nouvelle gĂ©nĂ©ration, on a dĂ©montrĂ© la prĂ©sence de variation gĂ©nĂ©tique substantielle inter-isolats et -espĂšces, engendrĂ©es par l'invasion d'Ă©lĂ©ments mobiles dans les gĂ©nomes mitochondriaux des CMA, donnant lieu Ă  une Ă©volution molĂ©culaire rapide des rĂ©gions intergĂ©niques. Cette variation permettait de dĂ©velopper des marqueurs spĂ©cifiques Ă  des isolats de la mĂȘme espĂšce. Ensuite, Ă  l'aide d'une approche analytique par rĂ©seaux de gĂšnes sur des Ă©lĂ©ments mobiles, on a Ă©tĂ© en mesure de dĂ©montrer des Ă©vĂšnements de recombinaisons homologues entre des haplotypes mitochondriaux distincts, menant Ă  des rĂ©arrangements gĂ©nomiques. Cela a permis d'ouvrir les perspectives sur la dynamique mitochondriale et l'hĂ©tĂ©roplasmie dans un mĂȘme isolatsuggĂšre une coexistence de diffĂ©rents haplotypes mitochondriaux dans les populations naturelles et que les cultures monosporales pourraient induirent une sous-estimation de la diversitĂ© allĂ©lique mitochondriale. Cette apparente contradiction avec l'homogĂ©nĂ©itĂ© mitochondriale intra-isolat gĂ©nĂ©ralement observĂ©e, a amenĂ© Ă  investiguer Ă©tudier les Ă©changes gĂ©nĂ©tiques Ă  l'aide de croisements d'isolats gĂ©nĂ©tiquement distincts. MalgrĂ© l'observation de quelques spores filles hĂ©tĂ©roplasmiques, l'homoplasmie Ă©tait le statut par dĂ©faut dans toutes les cultures monosporales, avec un biais en faveur de l'un des haplotypes parentaux. Ces rĂ©sultats suggĂšrent que la sĂ©grĂ©gation opĂšre durant la formation de la spore et/ou le dĂ©veloppement de la coloniedu mycĂ©lium. De plus, ils supportent la prĂ©sence d'une machinerie protĂ©ique de sĂ©grĂ©gation mitochondriale chez les CMAAMF, oĂč l'ensemble des gĂšnes impliquĂ©s dans ce mĂ©canisme ont Ă©tĂ© retrouvĂ© et sont orthologues aux autres champignons. Finalement, on est revenue aux sources avecon a Ă©tudiĂ© le polymorphisme mitochondrial intra-isolat Ă  l'aide d'une approche conventionnelle de PCR en utilisant une Taq polymĂ©rase de haute fidĂ©litĂ©, suivie de clonage et de sĂ©quençage Sanger, sur deux isolats de R. irregularis. Cela a permis l'observation d'hĂ©tĂ©roplasmie in situ, ainsi que la co-expression de variantes de variantes de protĂ©ines'ARNm dans une souche in vitro. Les rĂ©sultats suggĂšrent que d'autres Ă©tudes basĂ©es sur le sĂ©quençage nouvelle gĂ©nĂ©ration aurait potentiellement ignorĂ©e cette variation, offrant ainsi plusieurs nouveaux arguments permettant de considĂ©rer les CMA comme des organismes possĂ©dant une population de gĂ©nomes mitochondriaux et nuclĂ©aires distincts.The association between arbuscular mycorrhizal fungi (AMF) and plant roots is one of the most widespread symbioses involving plants, and thus has an important role in terrestrial ecosystems. In exchange for carbohydrates, AMF improve plant fitness by enhancing mineral nutrient uptake, especially in particular phosphate and nitrate. Although this symbiosisDespite the fact that these symbioses contribute provides to important services toin ecosystems, the species richness, community structure and functional diversity of AMF is not well understood due to a lack of reliable molecular tools. The intra-isolate genetic polymorphism of nuclear DNA observed in AMF, combined with a lack of genomic data in a broad range of phylogenetic groups, has made it difficult to develop molecular markers and to determine evolutionary relatedness at high levels of resolution (i.e. between genetically-similar species and/or isolates). For these reasons, it seems a good alternative to use a different genetic system by targeting the mitochondrial genome, which have been shown to be homogeneous within AMF isolates. However, given the peculiar lifestyle of these organisms, a better understanding of the mitochondrial evolutionary processes and dynamics were is necessary in order to validate the usefulness of such markers in diversity and population genetics studies. In that regard, the objectives of my PhD project were to investigate: i) the divergence between closely related species and isolates, ii) mitochondrial genomes plasticity, iii) mitochondrial heritability and potential segregation mechanisms and iv) in situ mitochondrial intra-isolate allelic diversity. With Using comparative mitochondrial genomics using and next generation sequencing (NGS) sequencing, we found substantial sequence variation in intergenic regions caused by the invasion of mobile genetic elements. This variation gives risecontributes to rapid mitochondrial genome evolution among closely related isolates and species, which makes it possible to design reliable intra- and inter-specific markers. Also, an extensive gene similarity network-based approach allowed us to provide strong evidence of inter-haplotype recombination in AMF, leading to a reshuffled mitochondrial genome. These findings suggest the coexistence of distinct mtDNA haplotypes in natural populations and raise questions as to whether AMF single spore cultivations artificially underestimates mitochondrial genetic diversity in natural population.. This apparent contradiction with the intra-isolate mtDNA homogeneity usually observed in these fungi, led to the investigation of mitochondrial heritability in the spore progeny resulting from crossed-cultures. Although an heteroplasmic state was observed in some daughter spores, we found that homoplasmy was the dominant state in all monosporal cultures, with an apparent bias towards one of the parental haplotypes. These results strongly support the presence of a putative mitochondrial segregation proteic machinery in AMF, whose complete set of genes were orthologous with those found in other fungi. Our findings suggest that segregation takes place either during spore formation or colony mycelium development. Finally, we performed a conventional PCR based approach with a high fidelity Taq polymerase, followed by downstream cloning and Sanger sequencing using the model organism Rhizophagus irregularis. We found in situ heteroplasmy along with substantial intra-isolate allelic variation within the mtDNA that persists in the transcriptome. Our study also suggest that genetic variation in Glomeromycota is higher than meets the eye and might be critically underestimated in most NGS based-AMF studies both in nuclei and mitochondria

    Plant growth-promoting bacteria from Western Australian soils

    Get PDF
    Harnessing the abilities of soil microbes to improve plant health and productivity may be an important factor in obtaining food security for the future. In this study, 179 potential plant growth-promoting bacteria (PGPB) were isolated from the rhizosphere of five types of plants from three Western Australian soils. On the basis of in vitro plant growth promotion assays, seven isolates were selected for testing in field trials in Western Australia. Two of the PGPB, Burkholderia caledonica NCH45 and Enterobacter soli ANMK1, improved the yield of wheat by 23% and 9% respectively. The isolate, Pseudomonas granadensis PMK4, improved nodulation when co-inoculated with rhizobia on peas by up to 71% and grain yields by 35%. P. granadensis PMK4 was shown to inhabit the nodules of the field grown peas using strain specific primers developed in this study from the 16S-23S rRNA ITS1 region of this isolate. P. granadensis PMK4 was also tested in field trials on Christmas Island on several legume species at three different fertilizer levels (nil, low and high). Significant increases in nodulation and/or plant yields were observed for soybean and mungbean co-inoculated with PMK4 and rhizobia at a low level of applied fertilizer compared with rhizobia only controls. Co-inoculation with PMK4 also significantly increased the copper and phosphorus concentration in the shoots of lablab and soybean at the nil (lablab) and low (lablab and soybean) fertilizer levels. Glasshouse trials using a full phosphorus response curve demonstrated that phosphorus solubilisation is not the mechanism of action by NCH45 and PMK4 in wheat. However, growth pouch assays using the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, indicate that production of indole-3-acetic acid may be at least partly responsible for increasing wheat seedling root lengths. These results support the further testing of the three promising isolates in field trials to determine optimal conditions for improving plant productivity

    Polar Microbiology: Recent Advances and Future Perspectives

    Get PDF
    corecore