87,983 research outputs found

    Graphs, Friends and Acquaintances

    Get PDF
    As is well known, a graph is a mathematical object modeling the existence of a certain relation between pairs of elements of a given set. Therefore, it is not surprising that many of the first results concerning graphs made reference to relationships between people or groups of people. In this article, we comment on four results of this kind, which are related to various general theories on graphs and their applications: the Handshake lemma (related to graph colorings and Boolean algebra), a lemma on known and unknown people at a cocktail party (to Ramsey theory), a theorem on friends in common (to distanceregularity and coding theory), and Hall’s Marriage theorem (to the theory of networks). These four areas of graph theory, often with problems which are easy to state but difficult to solve, are extensively developed and currently give rise to much research work. As examples of representative problems and results of these areas, which are discussed in this paper, we may cite the following: the Four Colors Theorem (4CTC), the Ramsey numbers, problems of the existence of distance-regular graphs and completely regular codes, and finally the study of topological proprieties of interconnection networks.Preprin

    Expander Chunked Codes

    Full text link
    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks, and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance,where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 percent of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.Comment: 26 pages, 3 figures, submitted for journal publicatio
    • …
    corecore