178,237 research outputs found

    On the perfect 1-factorisation problem for circulant graphs of degree 4

    Get PDF
    A 1-factorisation of a graph G is a partition of the edge set of G into 1 factors (perfect matchings); a perfect 1-factorisation of G is a 1-factorisation of G in which the union of any two of the 1-factors is a Hamilton cycle in G. It is known that for bipartite 4-regular circulant graphs, having order 2 (mod 4) is a necessary (but not sufficient) condition for the existence of a perfect 1-factorisation. The only known non-bipartite 4-regular circulant graphs that admit a perfect 1-factorisation are trivial (on 6 vertices). We prove several construction results for perfect 1-factorisations of a large class of bipartite 4-regular circulant graphs. In addition, we show that no member of an infinite family of non-bipartite 4-regular circulant graphs admits a perfect 1-factorisation. This supports the conjecture that there are no perfect 1-factorisations of any connected non-bipartite 4-regular circulant graphs of order at least 8

    Hamiltonian cycles and 1-factors in 5-regular graphs

    Full text link
    It is proven that for any integer g≥0g \ge 0 and k∈{0,…,10}k \in \{ 0, \ldots, 10 \}, there exist infinitely many 5-regular graphs of genus gg containing a 1-factorisation with exactly kk pairs of 1-factors that are perfect, i.e. form a hamiltonian cycle. For g=0g = 0, this settles a problem of Kotzig from 1964. Motivated by Kotzig and Labelle's "marriage" operation, we discuss two gluing techniques aimed at producing graphs of high cyclic edge-connectivity. We prove that there exist infinitely many planar 5-connected 5-regular graphs in which every 1-factorisation has zero perfect pairs. On the other hand, by the Four Colour Theorem and a result of Brinkmann and the first author, every planar 4-connected 5-regular graph satisfying a condition on its hamiltonian cycles has a linear number of 1-factorisations each containing at least one perfect pair. We also prove that every planar 5-connected 5-regular graph satisfying a stronger condition contains a 1-factorisation with at most nine perfect pairs, whence, every such graph admitting a 1-factorisation with ten perfect pairs has at least two edge-Kempe equivalence classes. The paper concludes with further results on edge-Kempe equivalence classes in planar 5-regular graphs.Comment: 27 pages, 13 figures; corrected figure

    Subgraph distributions in dense random regular graphs

    Full text link
    Given connected graph HH which is not a star, we show that the number of copies of HH in a dense uniformly random regular graph is asymptotically Gaussian, which was not known even for HH being a triangle. This addresses a question of McKay from the 2010 International Congress of Mathematicians. In fact, we prove that the behavior of the variance of the number of copies of HH depends in a delicate manner on the occurrence and number of cycles of length 3,4,53,4,5 as well as paths of length 33 in HH. More generally, we provide control of the asymptotic distribution of certain statistics of bounded degree which are invariant under vertex permutations, including moments of the spectrum of a random regular graph. Our techniques are based on combining complex-analytic methods due to McKay and Wormald used to enumerate regular graphs with the notion of graph factors developed by Janson in the context of studying subgraph counts in G(n,p)\mathbb{G}(n,p)

    An Even 2-Factor in the Line Graph of a Cubic Graph

    Get PDF
    An even 2-factor is one such that each cycle is of even length. A 4- regular graph G is 4-edge-colorable if and only if G has two edge-disjoint even 2- factors whose union contains all edges in G. It is known that the line graph of a cubic graph without 3-edge-coloring is not 4-edge-colorable. Hence, we are interested in whether those graphs have an even 2-factor. Bonisoli and Bonvicini proved that the line graph of a connected cubic graph G with an even number of edges has an even 2-factor, if G has a perfect matching [Even cycles and even 2-factors in the line graph of a simple graph, Electron. J. Combin. 24 (2017), P4.15]. In this paper, we extend this theorem to the line graph of a connected cubic graph G satisfying certain conditions

    A construction for a counterexample to the pseudo 2-factor isomorphic graph conjecture

    Full text link
    A graph GG admiting a 22-factor is \textit{pseudo 22-factor isomorphic} if the parity of the number of cycles in all its 22-factors is the same. In [M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan. Pseudo 22-factor isomorphic regular bipartite graphs. Journal of Combinatorial Theory, Series B, 98(2) (2008), 432-444.] some of the authors of this note gave a partial characterisation of pseudo 22-factor isomorphic bipartite cubic graphs and conjectured that K3,3K_{3,3}, the Heawood graph and the Pappus graph are the only essentially 44-edge-connected ones. In [J. Goedgebeur. A counterexample to the pseudo 22-factor isomorphic graph conjecture. Discr. Applied Math., 193 (2015), 57-60.] Jan Goedgebeur computationally found a graph G\mathscr{G} on 3030 vertices which is pseudo 22-factor isomorphic cubic and bipartite, essentially 44-edge-connected and cyclically 66-edge-connected, thus refuting the above conjecture. In this note, we describe how such a graph can be constructed from the Heawood graph and the generalised Petersen graph GP(8,3)GP(8,3), which are the Levi graphs of the Fano 737_3 configuration and the M\"obius-Kantor 838_3 configuration, respectively. Such a description of G\mathscr{G} allows us to understand its automorphism group, which has order 144144, using both a geometrical and a graph theoretical approach simultaneously. Moreover we illustrate the uniqueness of this graph

    On matchings and factors of graphs /

    Get PDF
    In Section 1, we recall the historical sketch of matching and factor theory of graphs, and also introduce some necessary definitions and notation. In Section 2, we present a sufficient condition for the existence of a (g, f)-factor in graphs with the odd-cycle property, which is simpler than that of Lovasz\u27s (g, f)-Factor Theorem. From this, we derive some further results, and we show that (a) every r-regular graph G with the odd-cycle property has a k-factor, where 0 ≤ k ≤ r and k|V(G)| ≡ 0 (mod 2), (b) every graph G with the strong odd-cycle property with k|V(G)|≡ 0 (mod 2) is k-factorable if and only if G is a km-regular graph for some m ≥ 1, and (c) every regular graph of even order with the strong odd-cycle property is of the second class (i.e. the edge chromatic number is Δ). Chvátal [26] presented the following two conjectures that (1) a graph G has a 2-factor if tough(G) ≥ 3/2, and (2) a graph G has a k-factor if k|V(G)| ≡ 0 (mod 2) and tough(G) ≥ k. Enomoto et.al. [32] proved the second conjecture. They also proved the sharpness of the bound on tough(G) that guarantees the existence of a k-factor. This implies that the first conjecture is false. In Section 3, we show that the result of the second conjecture can be improved in some sense, and the first conjecture is also true if the graph considered has the odd-cycle property. Anderson [3] stated that a graph G of even order has a 1-factor if bind(G) ≥ 4/3, and Katerinis and Woodall [48] proved that a graph G of order n has a k-factor if bind(G) ˃ (2k -I)(n - 1)/(k(n - 2) + 3), where k ≥ 2, n ≥ 4k - 6 and kn ≡ 0 (mod 2). In Section 4, we shall present some similar conditions for the existence of [a, b]-factors. In Section 5, we study the existence of [a, b]-parity-factors in a graph, among which we extend some known theorems from 1-factors to {1, 3, ... , 2n - 1}-factors, or from k-factors to [a, b]-parity-factors. Also, extending Petersen\u27s 2-Factorization Theorem, we proved that a graph is [2a, 2b]-even-factorable if and only if it is a [2na, 2nb]-even-graph for some n ≥ 1. Plummer showed that (a) (in [58]) every graph G of even order is k-extendable if tough(G) ˃ k, and (b) (in [59]) every (2k+1)-connected graph G is k-extendable if G is K1,3-free, respectively. In Section 6, we give a counterpart of the former in terms of binding number, and extend the latter from K1,3-free graphs to K1,n-free graphs. Furthermore, we present a result toward the problem, posed by Saito [61] and Plummer [60], of characterizing the graphs that are maximal k-extendable

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

    Full text link
    A bipartite graph is {\em pseudo 2--factor isomorphic} if all its 2--factors have the same parity of number of circuits. In \cite{ADJLS} we proved that the only essentially 4--edge-connected pseudo 2--factor isomorphic cubic bipartite graph of girth 4 is K3,3K_{3,3}, and conjectured \cite[Conjecture 3.6]{ADJLS} that the only essentially 4--edge-connected cubic bipartite graphs are K3,3K_{3,3}, the Heawood graph and the Pappus graph. There exists a characterization of symmetric configurations n3n_3 %{\bf decide notation and how to use it in the rest of the paper} due to Martinetti (1886) in which all symmetric configurations n3n_3 can be obtained from an infinite set of so called {\em irreducible} configurations \cite{VM}. The list of irreducible configurations has been completed by Boben \cite{B} in terms of their {\em irreducible Levi graphs}. In this paper we characterize irreducible pseudo 2--factor isomorphic cubic bipartite graphs proving that the only pseudo 2--factor isomorphic irreducible Levi graphs are the Heawood and Pappus graphs. Moreover, the obtained characterization allows us to partially prove the above Conjecture
    • …
    corecore