12,353 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups

    Full text link
    Generalizing a result of Conway, Sloane, and Wilkes for real reflection groups, we show the Cayley graph of an imprimitive complex reflection group with respect to standard generating reflections has a Hamiltonian cycle. This is consistent with the long-standing conjecture that for every finite group, G, and every set of generators, S, of G the undirected Cayley graph of G with respect to S has a Hamiltonian cycle.Comment: 15 pages, 4 figures; minor revisions according to referee comments, to appear in Discrete Mathematic

    Vertex Cover Gets Faster and Harder on Low Degree Graphs

    Full text link
    The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P, and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and we also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637^k n^O(1)

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability
    • …
    corecore