9 research outputs found

    Polygonal Complexes and Graphs for Crystallographic Groups

    Full text link
    The paper surveys highlights of the ongoing program to classify discrete polyhedral structures in Euclidean 3-space by distinguished transitivity properties of their symmetry groups, focussing in particular on various aspects of the classification of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit polyhedra.Comment: 21 pages; In: Symmetry and Rigidity, (eds. R.Connelly, A.Ivic Weiss and W.Whiteley), Fields Institute Communications, to appea

    Polyhedra, Complexes, Nets and Symmetry

    Full text link
    Skeletal polyhedra and polygonal complexes in ordinary Euclidean 3-space are finite or infinite 3-periodic structures with interesting geometric, combinatorial, and algebraic properties. They can be viewed as finite or infinite 3-periodic graphs (nets) equipped with additional structure imposed by the faces, allowed to be skew, zig-zag, or helical. A polyhedron or complex is "regular" if its geometric symmetry group is transitive on the flags (incident vertex-edge-face triples). There are 48 regular polyhedra (18 finite polyhedra and 30 infinite apeirohedra), as well as 25 regular polygonal complexes, all infinite, which are not polyhedra. Their edge graphs are nets well-known to crystallographers, and we identify them explicitly. There also are 6 infinite families of "chiral" apeirohedra, which have two orbits on the flags such that adjacent flags lie in different orbits.Comment: Acta Crystallographica Section A (to appear

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) • Forbidden patterns. (János Pach) • Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) • What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants

    Regular Polyhedra of Index Two, II

    Full text link
    A polyhedron in Euclidean 3-space is called a regular polyhedron of index 2 if it is combinatorially regular and its geometric symmetry group has index 2 in its combinatorial automorphism group; thus its automorphism group is flag-transitive but its symmetry group has two flag orbits. The present paper completes the classification of finite regular polyhedra of index 2 in 3-space. In particular, this paper enumerates the regular polyhedra of index 2 with vertices on one orbit under the symmetry group. There are ten such polyhedra.Comment: 33 pages; 5 figures; to appear in "Contributions to Algebra and Geometry

    Block Systems of Ranks 3 and 4 Toroidal Hypertopes

    Get PDF
    This dissertation deals with abstract combinatorial structure of toroidal polytopes and toroidal hypertopes. Abstract polytopes are objects satisfying the main combinatorial properties of a classical (geometric) polytope. A regular toroidal polytope is an abstract polytope which can be constructed from the string affine Coxeter groups. A hypertope is a generalization of an abstract polytope, and a regular toroidal hypertope is a hypertope which can be constructed from any affine Coxeter group. In this thesis we classify the rank 4 regular toroidal hypertopes. We also seek to find all block systems on a set of (hyper)faces of toroidal polytopes and hypertopes of ranks 3 and 4 as well as the regular and chiral toroidal polytopes of ranks 3. A block system of a set X under the action of a group G is a partition of X which is invariant under the action of G
    corecore