285 research outputs found

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Performance evaluation of FPGA implementations of high-speed addition algorithms

    Get PDF
    Driven by the excellent properties of FPGAs and the need for high-performance and flexible computing machines, interest in FPGA-based computing machines has increased dramatically. Fixed-point adders are essential building blocks of any computing systems. In this work, various high-speed addition algorithms are implemented in FPGAs devices, and their performance is evaluated with the objective of finding and developing the most appropriate addition algorithms for implementing in FPGAs, and laying the ground-work for evaluating and constructing FPGA-based computing machines. The results demonstrate that the performance of adders built with the FPGAs dedicated carry logic combined with some other addition algorithms will be greatly improved, especially for larger adders.published_or_final_versio

    On the realistic worst case analysis of quantum arithmetic circuits

    Full text link
    We provide evidence that commonly held intuitions when designing quantum circuits can be misleading. In particular we show that: a) reducing the T-count can increase the total depth; b) it may be beneficial to trade CNOTs for measurements in NISQ circuits; c) measurement-based uncomputation of relative phase Toffoli ancillae can make up to 30\% of a circuit's depth; d) area and volume cost metrics can misreport the resource analysis. Our findings assume that qubits are and will remain a very scarce resource. The results are applicable for both NISQ and QECC protected circuits. Our method uses multiple ways of decomposing Toffoli gates into Clifford+T gates. We illustrate our method on addition and multiplication circuits using ripple-carry. As a byproduct result we show systematically that for a practically significant range of circuit widths, ripple-carry addition circuits are more resource efficient than the carry-lookahead addition ones. The methods and circuits were implemented in the open-source QUANTIFY software

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result
    • …
    corecore